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ABSTRACT

The largest eigenvalue of the matrix describing a network’s contact structure is often important in predicting the behavior of dynamical
processes. We extend this notion to hypergraphs and motivate the importance of an analogous eigenvalue, the expansion eigenvalue, for
hypergraph dynamical processes. Using a mean-field approach, we derive an approximation to the expansion eigenvalue in terms of the
degree sequence for uncorrelated hypergraphs. We introduce a generative model for hypergraphs that includes degree assortativity, and
use a perturbation approach to derive an approximation to the expansion eigenvalue for assortative hypergraphs. We define the dynamical
assortativity, a dynamically sensible definition of assortativity for uniform hypergraphs, and describe how reducing the dynamical assortativity
of hypergraphs through preferential rewiring can extinguish epidemics. We validate our results with both synthetic and empirical datasets.
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susceptible-infected-susceptible (SIS) model on hypergraphs,28 and
we believe it will also prove useful in relating hypergraph assortative
mixing patterns to other dynamical processes.

Our approach is as follows: first, we define and motivate the
importance of the expansion eigenvalue on dynamical processes;
second, we derive a mean-field approximation of this eigenvalue
for hypergraphs without assortativity; third, we present a generative
model for assortative hypergraphs; fourth, we employ a perturbation
approach to derive the effect of degree–degree mixing on the eigen-
value and define the dynamical assortativity; and last, we show how
our results can be used to modify hypergraph dynamics through
preferential rewiring of hyperedges.

II. PRELIMINARIES

We start by defining terminology. A hypergraph is a mathemat-
ical object that describes group interactions among a set of nodes.
We represent it as H = (V, E), where V is the set of nodes and E is the
set of hyperedges, which are subsets of V and represent unordered
interactions of arbitrary size. We call a hyperedge with cardinality
m an m-hyperedge and a hypergraph with only m-hyperedges an m-
uniform hypergraph. It is useful to consider weighted hypergraphs,
where each hyperedge e has an associated positive weight βe. We
define the hyperdegree sequence as in Ref. 15, where the mth order
hyperdegree of node i, k(m)

i , is the number of m-hyperedges to which
it belongs.

We now define the expansion eigenvalue and discuss its rel-
evance to dynamical processes on hypergraphs. For a weighted
hypergraph, the expansion eigenvalue λ and associated eigenvector
u are defined by the eigenvalue equation

λui =
∑

e={i,i1 ,...,im−1}∈E

βe(ui1 + · · · + uim−1), (1)

where λ and u are the Perron–Frobenius eigenvalue and eigenvector
of the non-negative matrix associated to linear equation (1).

A. Motivation

Here, we present some applications of the expansion eigen-
value. First, just like the Perron–Frobenius eigenvector of a net-
work, the adjacency matrix represents eigenvector centrality;29 in the
unweighted case (i.e., βe = 1 for every hyperedge e), the eigenvector
u corresponds to the Clique motif Eigenvector Centrality, a gen-
eralization of eigenvector centrality for hypergraphs.30 Second, just
as the largest eigenvalue of a network’s adjacency matrix influences
network dynamics, the expansion eigenvalue plays an important role
in dynamical processes on hypergraphs. For example, consider an
SIS process on a hypergraph, where a healthy node can get infected
via a hyperedge e to which it belongs at rate βe if at least one other
node in e is infected (the case referred to as individual contagion in
Ref. 15) and heals spontaneously at rate γ . As discussed in Ref. 28 in
Theorem 9.1, the extinction threshold for the exact stochastic pro-
cess can be bounded above by that for the mean-field dynamics. The
mean-field equation for xi, the probability that node i is infected, is

given by

dxi

dt
= −γ xi + (1 − xi)

×
∑

e={i,i1 ,...,im−1}∈E

βe[1 − (1 − xi1), . . . , (1 − xim−1)]. (2)

By inspection, xi = 0 for all x
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and only if λ and v solve the eigenvalue equation λv = Kv. Notice
that in the m-uniform case, we recover the expression we previously
derived. Consider the network formed by specifying hyperedge sizes
(m = 2, . . . , M) to be the nodes and constructing a link between two
sizes m1 and m2 if at least one node in the original hypergraph is
a member of a hyperedge of size m1 and a hyperedge of size m2.
K is irreducible if and only if this network is strongly connected. If
this is the case, by the Perron–Frobenius theorem, the eigenvalue
with largest magnitude is positive and has a corresponding positive
eigenvector, and they correspond, respectively, to λ and v.

C. Perturbation approach for the correlated case

In contrast with the uncorrelated case, we now assume that
nodes are connected with an arbitrary function fm determining the
connection probability. We define

fm(k1, . . . , km) = f(0)
m (k1, . . . , km)

[

1 + εgm(k1, . . . , km)
]

, (13)

where ε is a parameter which will later assume to be small and gm

an assortativity function for m-uniform hypergraphs. The assorta-
tivity function gm(k1, . . . , km) determines how likely it is that nodes
with degrees k1, . . . , km are joined by a m-hyperedge; if εgm > 0
(εgm < 0), it is more (less) likely than it would be expected if they
were connected at random. In order to preserve the expected degree
sequence, gm must satisfy

∑

k1 ,...,km
f(0)
m (k1, . . . , km)gm(k1, . . . , km)

= 0.
We now assume that the parameter ε is small and develop per-

turbative approximations to the eigenvalue λ and its eigenvector uk.
To first order, these approximations are

λ = λ(0) + ελ(1),

uk = u(0)

k + εu(1)

k ,
(14)

where λ(0) = (m − 10Td
[(m)0(339082]TJ
)R6rs8(99999 Tf
3(35703 0 Td(u).0Td
[(m)0.33975Td
(D)Tj
/R53i8.99999 Tf
3.55508 0 Td(u)0Td
[(m)0.1.35 Td
J
/R6rs8.99999 Tf
3.35703 0 Td(u)m(k
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IV. NUMERICAL RESULTS

A. Approximating the eigenvalue

We validate our results with numerical simulations on both
synthetic and empirical hypergraphs. For both types of data, we
modify the dynamical assortativity of the datasets by performing
preferential double hyperedge swaps on the hypergraphs.

For each dataset hypergraph H, we focus on an m-uniform par-
tition Hm

https://aip.scitation.org/journal/cha
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In particular, higher-order dynamical correlations might be missed
by this approach. The second (related) limitation is that, since this
eigenvalue is, by definition, a quantity related to linear processes,
its applicability is restricted in principle only to certain dynamical
regimes. However, approaches that reduce a hypergraph to an effec-
tive pairwise network have been successful and found application in
clustering,

https://aip.scitation.org/journal/cha
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We multiply both sides by k P(k)/〈k〉 and sum over k, which
yields

ελ(0)
∑

k

P(k)
k u(1)

k

〈k〉
+ αελ(1)

∑

k

P(k)
k2

〈k〉

= ε(m − 1)
∑

k

P(k)
k2

〈k〉

∑

k1

P(k1)
k1u

(1)

k1

〈k〉

+ αε(m − 1)
∑

k,k1 ,...,km−1

N(k)N(k1), . . . , N(km−1)

×
k2 k2

1 k2, . . . , km−1

(N〈k〉)m gm(k, k1, . . . , km−1).

Because λ(0) = (m − 1)〈k2〉/〈k〉, the first terms on both sides are
equal and we cancel them, yielding

ελ(1) = ε(m − 1)
〈k〉

〈k2〉

∑

k,k1 ,...,km−1

N(k)N(k1), . . . , N(km−1)

×
k2 k2

1, . . . , km−1

(N〈k〉)m gm(k, k1, . . . , km−1). (A2)

We can use the relation that fm(k1, . . . , km) = (m − 1)!k1, . . . ,
km/(N〈k〉)m−1 [1 + εgm(k1, . . . , km)

]

to remove the reference to gm,
obtaining

ελ(1) =
(m − 1)

(m − 1)!

〈k〉

〈k2〉

∑

k,k1 ,...,km−1

N(k)N(k1), . . . , N(km−1)

×
k k1

N〈k〉
fm(k, k1, . . . , km−1)

− (m − 1)
〈k〉

〈k2〉

∑

k,k1

P(k)P(k1)
k2 k2

1

〈k〉2
.

The term

1

2!(m − 2)!

∑

k,k1 ,...,km−1

N(k)
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susceptible and infected nodes as well as the rates of each mech-
anism. We repeat these steps until either t exceeds a maximum
specified time or the number of infected nodes is zero. We refer to
this termination time as T and the corresponding number of discrete
data points as NT. Modeling the SIS contagion process as a CTDS
process can be more efficient than a DTDS process when R
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