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In a recent report,2 we presented an analysis of the



B. Model dynamics

By considering a large ensemble of realizations of the

above stochastic process on the same network, we can define

the probability that node i is at state xt
i at time t as pt

iðxÞ. The

probabilities pt
i evolve in one time step by

ptþ1
i ð1Þ ¼ pt

ið0Þrt
i; (2)

ptþ1
i ð2Þ ¼ pt

ið1Þ; (3)

� � � (4)

ptþ1
i ðmiÞ ¼ pt

iðmi � 1Þ; (5)

and we also have the normalization condition

pt
ið0Þ ¼ 1 �

Xmi

j¼1

pt
iðjÞ; (6)

where rt
i in Eq. (2) is the rate of transitions from the ready to

the excited state, given by

rt
i ¼ E g þ ð1 � gÞ 1 �

Y
j

ð1 � AijI
t�sij

j Þ
( )" #

; (7)

where It
j is one if node j is excited at time t and zero other-

wise, and E½�� denotes an ensemble average. Assuming that

the neighbors of node i being excited are independent events,

we obtain, letting pt
ið1Þ � pt

i,

rt
i ¼



Now, we use the fact that the largest eigenvalue of A, k, is



determines �pi) and decays exponentially with the number of

expected excitations from its neighbors. In terms of the ag-

gregate response F̂, Eq. (22) becomes, after multiplying by

Aki, summing over k and i, and normalizing,

dF̂

dg
¼ hdout�p2e�A�pi

hdi : (23)

C. Dynamics near the critical regime



More precisely, the value of stimulus glow (ghigh) correspond-

ing to a low (high) threshold of activity F̂low (F̂high) are found

and the dynamic range is calculated as

D ¼ 10 log10ðghigh=glowÞ: (31)

Using our approximations to the response F̂ as a function of

stimulus g



and then connecting them using the configuration model.29

In some cases, an additional fourth step was used to change

the assortativity coefficient q, defined in Eq. (30), of a criti-

cal (i.e., with k ¼ 1) scale-free network, making this network

more assortative (disassortative) by choosing two links at

random, and swapping their destination connections only if

the resulting swap would increase (decrease) q. This swap-

ping allows for the degree of assortativity (and thereby, k) to

be modified while preserving the network’s degree

distribution.8,19

B. Results of numerical experiments

We first demonstrate the ability of the non-perturbative

approximation to predict aggregate network behavior in a va-

riety of conditions. Fig. 2 shows a multitude of simulations

(symbols) with the predicted behavior of Eq. (17) overlaid

(lines). The cases considered in Fig. 2 include different com-

binations of topology, assortativity, largest eigenvalue k,

delays, and number of refractory states. The number of re-

fractory states mi was chosen either constant, mi ¼ m, or ran-

domly chosen with equal probability among f1; 2;…;mmaxg



of the refractory states. Equation (21) predicts that the

response should scale as hm þ 1=2i�1
. The inset shows how,

after multiplication by hm þ 1=2i, the response curves col-

lapse into a single curve. Figure 4 also depicts a linear rela-

tionship, F̂ � ðk � 1Þ for k > 1. Making a connection with

the theory of nonequilibrium phase transitions in which

F̂ � ðk � kcÞb
, we derive kc ¼ 1 and the critical exponent

b ¼ 1.

Figure 5 shows the response F̂ close to g ¼ 1 calculated

for various values of m from the simulation (symbols), and

from Eq. (23) (solid lines). Equation (23) describes well the

slope of F̂ close to g ¼ 1. An important observation is that as

m grows, the relative slope F̂�1dF̂=dg at g ¼ 1 decreases.

Therefore, if the typical refractory period m is large, the

response F̂ saturates [e.g., reaching 90% of F̂ð1Þ ] for smaller

values of g:
Transmission delays, as in the analogous system of gene

regulatory networks,18



determined from the distribution of delays. In Fig. 6, we
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