| Effects of network topology, transmission delays, and refractoriness on the response of coupled excitable systems to a stochastic stimulus Daniel B. Larremore, | | | | | | |--|--|--|--|--|--| In a recent report,² we presented an analysis of the ## **B.** Model dynamics By considering a large ensemble of realizations of the above stochastic process on the same network, we can define the probability that node i is at state x_i^t at time t as $p_i^t \delta x P$. The probabilities p_i^t evolve in one time step by (4) $$p_i^{t \triangleright 1} \delta m_i \triangleright \frac{1}{4} p_i^t \delta m_i \qquad 1 \triangleright, \tag{5}$$ and we also have the normalization condition $$p_i^{\dagger} \tilde{0} 0 \tilde{P} \stackrel{\mathcal{M}_i}{\cancel{4}} 1 \qquad p_i^{\dagger} \tilde{0} j \tilde{P}, \tag{6}$$ where r_i^t in Eq. (2) is the rate of transitions from the ready to the excited state, given by where l_j^t is one if node j is excited at time t and zero otherwise, and E½ denotes an ensemble average. Assuming that the neighbors of node i being excited are independent events, we obtain, letting $p_i^t \tilde{0} 1 P$ p_i^t , Now, we use the fact that the largest eigenvalue of A, λ , is determines \bar{p}_i) and decays exponentially with the number of expected excitations from its neighbors. In terms of the aggregate response \hat{F} , Eq. (22) becomes, after multiplying by A_{ki} , summing over k and i, and normalizing, $$\frac{\mathrm{d}\hat{F}}{\mathrm{d}\eta} \, \frac{\mathrm{hd}^{\mathrm{out}} \bar{p}^2 \mathrm{e}^{-\mathrm{A}\bar{p}} \mathrm{i}}{\mathrm{hd}\, \mathrm{i}} \, . \tag{23}$$ ## C. Dynamics near the critical regime More precisely, the value of stimulus η_{low} (η_{high}) corresponding to a low (high) threshold of activity \hat{F}_{low} (\hat{F}_{high}) are found and the dynamic range is calculated as Using our approximations to the response $\hat{\mathsf{F}}$ as a function of stimulus η and then connecting them using the configuration model. ²⁹ In some cases, an additional fourth step was used to change the assortativity coefficient ρ , defined in Eq. (30), of a critical (i.e., with λ ¼ 1) scale-free network, making this network more assortative (disassortative) by choosing two links at random, and swapping their destination connections only if the resulting swap would increase (decrease) ρ . This swapping allows for the degree of assortativity (and thereby, λ) to be modified while preserving the network's degree distribution. ^{8,19} ## B. Results of numerical experiments We first demonstrate the ability of the non-perturbative approximation to predict aggregate network behavior in a variety of conditions. Fig. 2 shows a multitude of simulations (symbols) with the predicted behavior of Eq. (17) overlaid (lines). The cases considered in Fig. 2 include different combinations of topology, assortativity, largest eigenvalue λ , delays, and number of refractory states. The number of refractory states m_i was chosen either constant, m_i ¼ m, or randomly chosen with equal probability among $f1, 2, ..., m_{max}g$ of the refractory states. Equation (21) predicts that the response should scale as hm $\triangleright 1/2i^{-1}$. The inset shows how, after multiplication by hm $\triangleright 1/2i$, the response curves collapse into a single curve. Figure 4 also depicts a linear relationship, $\hat{F} = \delta \lambda - 1 \triangleright$ for $\lambda > 1$. Making a connection with the theory of nonequilibrium phase transitions in which $\hat{F} = \delta \lambda - \lambda_c \flat^\beta$, we derive λ_c ¼ 1 and the critical exponent β ¼ 1. Figure 5 shows the response \hat{F} close to η ¼ 1 calculated for various values of m from the simulation (symbols), and from Eq. (23) (solid lines). Equation (23) describes well the slope of \hat{F} close to η ¼ 1. An important observation is that as m grows, the relative slope \hat{F} $^{1}d\hat{F}/d\eta$ at η ¼ 1 decreases. Therefore, if the typical refractory period m is large, the response \hat{F} saturates [e.g., reaching 90% of \hat{F} 01 1 1 for smaller values of η . Transmission delays, as in the analogous system of gene regulatory networks, ¹⁸ | determined from the distribution of delays. In Fig. 6, we | | | | | | |---|--|--|--|--|--| |