


systems89, It is key to characterize physiologicall® and brain

rhythms®?, to understand collective animal behavior!?, and
is also observed in non biological systems such as coupled
Josephson junctions!3, lasersl4

Synchronizationl—7 pervades physical and biological



involved in the appearance of brain rhythms and cortical
oscillations!16683 since Kuramoto-like dynamics has been



However, the adaptive coupling proposed in26 is not local: it does
not admit a generalization that locally couples the different



associated to the links of the ne{twork, giving
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observed at 05(N) < 2.14623... in finite networks. We study this
effect quantitatively by measuring the transition threshold on
systems of varying size N, averaging 100 independent iterations
for each N (see Fig. 4). We find that the observed distance from
the theoretical critical point given in Eq. (31) decreases
consistently with a power-law in N, with scaling exponent
0.177 (computed with integration time T, =5), confirming
further our theoretical prediction of a7. The observed behavior is
consistent with the earlier transition being caused by finite N
effects. For finite N, the system will have fluctuations about the
incoherent state which may bring the system to the basin of
attraction of the rhythmic phase and cause a transition even when
the incoherent state is stable. Thus, the observed transition point
depends on N (larger N implies smaller fluctuations), and T,
(larger T, implies larger probability of transition before
reaching 7).
Finally, we fi









|bi] <1 provided that we attribute to a and B an infinitesimally
small imaginary part.

For X4 # 0, a; = 0 and b; = 0, the continuity equation is satisfied
if and only if (see Methods for details) a; and b; are complex
variables with absolute value one, i.e., |aj = |bj| = 1, that satisfy
the system of differential equations
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where here and in the following we indicate with X? the complex
conjugate of X, and with a;* = a and b;* = b} the complex
conjugate of a; and b; respectively. We note that the only
stationary solutions of these equations are
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quantity. The expansion coefficients are given by
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for n>0,m>0. The series in Eq. (36) converges for |a;| <1 and



and b;(w;, ®;) as

1N N
Xa= Ng:l ay(wy, @),

1 N (45)
Xp = Nig by (w;, &),

where af and b are the complex conjugates of a and b;,
respectively.

If the internal frequencies w; and ®; are not known, we can
express these complex order parameters in terms of the marginal
distributions Go(w) and G,(®) as

X, = / dw / dOGy(0)G,(R)a* (@, ®),
(46)
Xg = / dw / dQG(0)Gy (@)D (w0, B).

This derivation shows that a(w, ®) and b(w, ®) can be obtained
from the integration of (Egs. (38) and (41)). In particular, as we
discuss in the next paragraph (paragraph Il E 2) these equations
will be used to investigate the steady state solution of this
dynamics and the range of frequencies on which this stationary



phase as a rhythmic phase with
No() = Ny(0) + Ot (33)

where we note, however, that numerical simulations reveal that
the observed emergent frequency €k decreases with increasing
network size (see Fig. 8).






consistent equation for R, as
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For Ry < 1, we make the following approximations
Go(Oy + XRyX) =~ Gy(©y),
Go(O + 0R X — ®/2) >~ Gy(©, — ®/2).

Inserting these expressions into the self-consistent equation for
R« We can derive the equation determining the value of the
coupling constant ¢ =0, at which we observe the continuous
phase transition,

1= 0\/7{ erff f } erfc (1 \/gc)] (72)

where erf(x) is the error function and erfc(x

(71)



Moreover, for every m>0, n>0 the following equation needs to be satisfied
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