


Synchronization1–7 pervades physical and biological
systems8,9. It is key to characterize physiological10 and brain
rhythms11, to understand collective animal behavior12, and

is also observed in non biological systems such as coupled
Josephson junctions13, lasers14



involved in the appearance of brain rhythms and cortical
oscillations11,66,83 since Kuramoto-like dynamics has been



However, the adaptive coupling proposed in26 is not local: it does
not admit a generalization that locally couples the different



associated to the links of the network, giving
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observed at σ?
c ðNÞ < 2:14623::: in finite networks. We study this

effect quantitatively by measuring the transition threshold on
systems of varying size N, averaging 100 independent iterations
for each N (see Fig. 4). We find that the observed distance from
the theoretical critical point given in Eq. (31) decreases
consistently with a power-law in N, with scaling exponent
0.177 (computed with integration time Tmax ¼ 5), confirming
further our theoretical prediction of σ?

c . The observed behavior is
consistent with the earlier transition being caused by finite N
effects. For finite N, the system will have fluctuations about the
incoherent state which may bring the system to the basin of
attraction of the rhythmic phase and cause a transition even when
the incoherent state is stable. Thus, the observed transition point
depends on N (larger N implies smaller fluctuations), and Tmax
(larger Tmax implies larger probability of transition before
reaching σ)

c ).
Finally, we fi







quantity. The expansion coefficients are given by

f ðα;iÞn ðω; ω̂; tÞ ¼ ½aiðω; ω̂; tÞ"
n

f ðβ;iÞm ðω; ω̂; tÞ ¼ ½biðω; ω̂; tÞ"
m

ð37Þ

for n > 0, m > 0. The series in Eq. (36) converges for ∣ai∣ ≤ 1 and

∣bi∣ ≤ 1 provided that we attribute to α and β an infinitesimally
small imaginary part.

For Xα ≠ 0, ai ≠ 0 and bi ≠ 0, the continuity equation is satisfied
if and only if (see Methods for details) ai and bi are complex
variables with absolute value one, i.e., ∣ai∣= ∣bi∣= 1, that satisfy
the system of differential equations
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where here and in the following we indicate with X?
α the complex

conjugate of Xα, and with a$1
i ¼ a?i and b$1

i ¼ b?i the complex
conjugate of ai and bi respectively. We note that the only
stationary solutions of these equations are
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with di,α, di,β defined as

di;α ¼
ωi $ Ω̂

σRα
;

di;β ¼ $ω̂i=σ þ ImXβ;

ð40Þ
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and biðωi; ω̂iÞ as
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where a?i and b?i are the complex conjugates of ai and bi,
respectively.

If the internal frequencies ωi and ω̂i are not known, we can
express these complex order parameters in terms of the marginal
distributions G0(ω) and G1ðω̂Þ as
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This derivation shows that aðω; ω̂Þ and bðω; ω̂Þ can be obtained
from the integration of (Eqs. (38) and (41)). In particular, as we
discuss in the next paragraph (paragraph II E 2) these equations
will be used to investigate the steady state solution of this
dynamics and the range of frequencies on which this stationary



phase as a rhythmic phase with

ηαðtÞ ’ ηαð0Þ þΩEt; ð53Þ

where we note, however, that numerical simulations reveal that
the observed emergent frequency ΩE decreases with increasing
network size (see Fig. 8).





consistent equation for Rα as
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For Rα ≪ 1, we make the following approximations

G0ðΩ0 þ xRαxÞ ’ G0ðΩ0Þ;
G0ðΩ0 þ σRαx $ ω̂=2Þ ’ G0ðΩ0 $ ω̂=2Þ:

ð71Þ

Inserting these expressions into the self-consistent equation for
Rα, we can derive the equation determining the value of the
coupling constant σ = σc at which we observe the continuous
phase transition,
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where erf(x) is the error function and erfc(x



Moreover, for every m > 0, n > 0 the following equation needs to be satisfied

nan$1bm∂ta þ manbm$1∂tb þ ianbmnκα þ ian
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