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PACS 05.45.-a – Nonlinear dynamics and chaos
PACS 05.45.Xt – Synchronization; coupled oscillators
PACS 64.60.aq – Networks

Abstract – Employing the Kuramoto model as an illustrative example, we show how the use of
the mean-field approximation can be applied to large networks of phase oscillators with assorta-
tivity. We then use the ansatz of Ott and Antonsen (Chaos, 19 (2008) 037113) to reduce the
mean-field kinetic equations to a system of ordinary differential equations. The resulting formu-
lation is illustrated by application to a network Kuramoto problem with degree assortativity and
correlation between the node degrees and the natural oscillation frequencies. Good agreement is
found between the solutions of the reduced set of ordinary differential equations obtained from
our theory and full simulations of the system. These results highlight the ability of our method
to capture all the phase transitions (bifurcations) and system attractors. One interesting result is
that degree assortativity can induce transitions from a steady macroscopic state to a temporally
oscillating macroscopic state through both (presumed) Hopf and SNIPER (saddle-node, infinite
period) bifurcations. Possible use of these techniques to a broad class of phase oscillator network
problems is discussed.
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Introduction. – Recently there has been much inter-
est in the dynamics of large networks of coupled dynam-
ical units. Such systems are of very broad applicability
including such examples as power grids [1], networks of
interacting genes [2], neuronal networks [3], and many oth-
ers. A key question is that of how topological aspects of
the network structure affect the global macroscopic dy-
namics of the system. In this paper we will emphasize
the topological aspects of both degree distribution and
(especially) assortativity [4] (i.e., the tendency of nodes
of a certain type to preferentially link to or avoid link-
ing to nodes of similar type), and we will formulate a
mean-field approach [5,6], incorporating these topological
effects. In particular, we will consider the case in which
the dynamical units on each network node are oscillators
whose states are specified solely by their respective phases
(so-called “phase oscillators”). Thus, the amplitudes of
the nodal oscillations are fixed and are not dynamically
varying. Although there are many phase oscillator models
(e.g.
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example is that degree assortativity can induce phase tran-
sitions from a steady macroscopic state to a temporally
oscillating macroscopic state.

Again we emphasize that the general type of formulation
used here can be employed and generalized to treat other
situations involving large phase oscillator networks.

Mean-field formulation. – We consider a random
network of N � 1 nodes. The network is constructed
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One could now imagine attacking the system (10)
and (11) directly (as was done numerically in the globally
coupled case in ref. [17]) or by employing various conve-
nient forms of g(ω|k) where the integral over ω in eq. (11)
can be done (e.g., refs. [12], [17], and [18]) by evaluating
residue contributions at the complex poles of g(ω|k). Here
we adopt the latter approach and use the simple example
of a Lorentzian distribution of natural frequencies,

g(ω|k) = 1
π

Δ(k)
[ω−ω0(k)]2+Δ2(k)

= 1
2πi

{
1

ω−[ω0(k)+iΔ(k)] −
1

ω−[ω0(k)−iΔ(k)]

}
. (12)

Following ref. [12], we note that it can be shown that
b(ω′,k, t) is analytic in the upper half ω′-plane where
it goes exponentially to zero as |ω′| → ∞. Thus eval-
uating the ω′ integral (eq. (11)) by the Cauchy residue
theorem [12], inserting the result in eq. (10), and setting
ω = ω0(k) + iΔ(k), we obtain{

∂

∂t
+ [−iω0(k) + Δ(k)]

}
b̂(k, t)

+
K
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∑
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above, but in which the mean of the oscillations changes
discontinuously as K is increased. In the supplementary
material [20] we include an additional example which il-
lustrates how the novel sequence of bifurcations appears
for assortative networks. Since our goal here is only to il-


