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Spatiotemporal dynamics of calcium-driven cardiac alternans
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We investigate the dynamics of spatially discordant alternans (SDA) driven by an instability of intracellular
calcium cycling using both amplitude equations [P. S. Skardal, A. Karma, and J. G. Restrepo, Phys. Rev. Lett.
108, 108103 (2012)] and ionic model simulations. We focus on the common case where the bidirectional coupling
of intracellular calcium concentration and membrane voltage dynamics produces calcium and voltage alternans
that are temporally in phase. We find that, close to the alternans bifurcation, SDA is manifested as a smooth
wavy modulation of the amplitudes of both repolarization and calcium transient (CaT) alternans, similarly to
the well-studied case of voltage-driven alternans. In contrast, further away from the bifurcation, the amplitude
of CaT alternans jumps discontinuously at the nodes separating out-of-phase regions, while the amplitude of
repolarization alternans remains smooth. We identify universal dynamical features of SDA pattern formation
and evolution in the presence of those jumps. We show that node motion of discontinuous SDA patterns is
strongly hysteretic even in homogeneous tissue due to the novel phenomenon of “unidirectional pinning”: node
movement can only be induced towards, but not away from, the pacing site in response to a change of pacing
rate or physiological parameter. In addition, we show that the wavelength of discontinuous SDA patterns scales
linearly with the conduction velocity restitution length scale, in contrast to the wavelength of smooth patterns that
scales sublinearly with this length scale. Those results are also shown to be robust against cell-to-cell fluctuations
due to the property that unidirectional node motion collapses multiple jumps accumulating in nodal regions into a
single jump. Amplitude equation predictions are in good overall agreement with ionic model simulations. Finally,
we briefly discuss physiological implications of our findings. In particular, we suggest that due to the tendency
of conduction blocks to form near nodes, the presence of unidirectional pinning makes calcium-driven alternans
potentially more arrhythmogenic than voltage-driven alternans.
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I. INTRODUCTION

Each year sudden cardiac arrest claims over 300 000 lives
in the United States, representing roughly half of all heart
disease deaths and making it the leading cause of natural
death [1–3]. Following several studies that linked beat-to-beat
changes of electrocardiographic features to increased risk
for ventricular fibrillation and sudden cardiac arrest [4–6],
the phenomenon of “cardiac alternans” has been widely
investigated [3,7–21]. At the cellular level, alternans originates
from a period doubling instability of the coupled dynamics of
the transmembrane voltage (Vm) and the intracellular calcium
concentration ([Ca2+]i). This instability is typically mani-
fested as a long-short-long-short sequence of action potential
duration (APD) accompanied by an in-phase (out-of-phase)
large-small-large-small (small-large-small-large) sequence of
peak calcium concentration (Ca).

At a tissue scale, cardiac alternans can be either spatially
concordant, with the whole tissue alternating in phase, or
spatially discordant, with different regions alternating out
of phase. In two dimensions, those out-of-phase regions of
period 2 dynamics are separated by nodal lines of period 1
dynamics, which reduce to points or nodes in one dimension.
In their pioneering study that evidenced spatially discordant
alternans (SDA) [16], Pastore et al. further demonstrated that
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SDA provides an arrhythmogenic substrate that facilitates the
initiation of reentrant waves, thereby establishing a causal link
between alternans at the cellular scale and sudden cardiac
arrest. Subsequent research has focused on elucidating basic
mechanisms of formation of SDA and conduction blocks
promoted by SDA [10–15,17–21].

A. Voltage-driven alternans

To date, our basic theoretical understanding of SDA is well
developed primarily for the case where alternans is “voltage-
driven” [1,22–25], i.e., originates from an instability of the
Vm dynamics. For a one-dimensional cable of length L, the
Vm dynamics is governed by the well-known cable equation

∂tVm = DV ∂2
x Vm − Iion/Cm, (1)

where DV is the diffusion coefficient; Iion describes the total
flux of ion currents; Cm is the cell membrane capacitance; and,
by convention, we assume the cable is periodically paced at
the end x = 0. While the cable equation provides in principle
a faithful description of the Vm dynamics, it does not allow
an analytical treatment of the alternans bifurcation. A fruitful
theoretical framework for characterizing this bifurcation has
been the use of iterative maps first applied to the cell dynam-
ics [26,27] and formulated in terms of the APD restitution
properties. This relation describes the evolution of APD for an
isolated cell and is given by

An+1 = f (Dn), (2)
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where An+1 and Dn are the APD and diastolic interval (DI)
at beats n + 1 and n, respectively. At the tissue scale, the
diffusive coupling between cells influences the dynamics
through the conduction velocity (CV) restitution relation,
which describes how the depolarization wave speed depends
on DI, defined here by the function vcv(D). CV restitution
causes the activation interval Tn = An + Dn (the interval
between the arrival of the nth and nth
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and (13) into Eqs. (5) and (6). This yields the following reduced
system:

cn+1(x) = −rcn(x) + c3
n(x) − αan(x)

+ α

�

∫ x

0
e(x ′−x)/�an(x ′)dx ′, (19)

an+1(x) =
∫ L

0
G(x,x ′)

[
− βan(x ′)

+ β
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Eqs. (19) and (20) and voltage-driven alternans governed by
Eq. (4) [22,23] near onset. We find remarkable similarities
between the dynamics, suggesting that the dynamics near
onset are universal. In particular, both calcium- and voltage-
driven alternans admit two classes of solutions after onset
that depends on the asymmetry parameter w: traveling and
stationary wave patterns. For both traveling and stationary
solutions, the scaling of the spatial wavelength is equivalent
for calcium- and voltage-driven alternans.

In contrast, the critical onset value and velocity of traveling
wave patterns of calcium-driven alternans is not precisely
equivalent to the voltage-driven case. In particular, the model
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solutions satisfy

�c′(x) = −α�a′(x) − (r − 1)c(x) + c3(x)

r − 1 − 3c2(x)
. (33)

Thus, we see that when 3c2(x) = r − 1 the denominator on
the right-hand side of Eq. (33) vanishes, causing the derivative
c′(x) to diverge and the profile c(x) to develop a jump
discontinuity. Thus, upon formation of discontinuities, the left
jumping point is given by c− = ±√

(r − 1)/3. To find the
right jumping point we note that stationary solutions satisfy
the cubic equation

(r − 1)c(x) − c3(x) = A(x), (34)

where A(x) = −αa(x) + α
�

∫ x

0 e(x ′−x)/�a(x ′)dx ′. Since a(x)
is smoothed by the Green’s function at each iteration, the
quantity A(x) remains smooth through the discontinuity in
c(x). The right jumping point c+ is given by the other
root of Eq. (34) at x = x0, where A(x0) = (r − 1)c− + c3

− =
±2(r − 1)3/2/3

√
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FIG. 9. (Color online) (a) Jumping points values |c−| and |c+|
and (b) asymmetry of nodes � as � is increased from a steady-state
profile with normal jumps with r = 1.2 and � = 10, plotted in solid
blue and dashed red. Other parameters are α,γ = √

0.3, β = 0, ξ = 1,
and w = 0 with L = 30 and �x = 0.005.

a spatial discretization of �x = 0.005, and other parameters
are α,γ = √

0.3, β = 0, ξ = 1, and w = 0. We find that c− and
c+ approach one another in absolute value as � is increased.
In fact, it can be shown by studying the large � limit of
Eqs. (19) and (20) with w = 0 that |c−| and |c+| approach
the value

√
r − 1 as � → ∞, which is denoted in dot-dashed

black. This result also follows from the analysis presented in
Appendix C. We see explicitly in Fig. 9(b) that as � increases,
� approaches zero. Furthermore, if we restore � to its original
value after increasing it, the profile recovers its original shape
and previous jumping point values. Finally, we note that if
the symmetry of the Green’s function is broken with w > 0,
it can be shown that as � is increased, the magnitude of the
left jumping point c− eventually surpasses the magnitude of
the right jumping point c+, yielding a negative value for the
asymmetry �.

Next, we consider the effect that decreasing r or � has on
discontinuous solutions. Interestingly, the effect is somewhat
the opposite of what was described above: the jumping points
c− and c+ remain unchanged and the node locations move
towards the pacing site at x = 0. Furthermore, if r or � are
restored to their original (larger) value, we find that the profile
does not recover its original shape. Instead, the node remains
pinned to the location closer to the pacing site and the shape
of the node symmetrizes as described above. We refer to this
phenomenon as unidirectional pinning.

In Fig. 10 we illustrate the phenomenon of unidirectional
pinning by plotting the location of the first node x1 as we slowly
“zig-zag” � after obtaining a steady-state discontinuous
solution at
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those closer to the pacing site, eventually resulting in a single
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it from 340 ms back to 330 ms. The pacing protocol here is
to simulate the cable for 12 000 beats to achieve steady state
and then change BCL by� BCL = 0.1 ms every 300 beats.
In Fig. 20(a)we plot the proÞle of the amplitude of calcium
alternansc(x) at BCL = 330 ms, 335 ms, and 340 ms in red
circles, green crosses, and blue triangles, respectively, as we
Þrst increase BCL. Note that the node locations move towards
the pacing site atx = 0 during this process, as predicted by our
reduced model, in a similar fashion to changing� (see Fig.19).
Furthermore, due to the Þxed Þnite size of the cable, and
additional node forms, as it did when� changed. In Fig.20(b)
we plot the proÞle of the amplitude of calcium alternansc(x)
as we now decrease BCL, plotting proÞles at BCL= 340 ms,
335 ms, and 330 ms in blue triangles, green crosses, and red
circles. Importantly, we note that as BCL is restored to 330 ms
the node locations remain pinned in their locations close to the
pacing site. We again highlight the pinning phenomenon by
plotting in Fig.20(c)the second node location,x2, and� versus
the beat number in blue circles and dashed red, respectively.
Just as in the previous simulation where� was modiÞed, we
see that the node Þrst moves towards the pacing site as the
BCL is initially increased but remains pinned as we restore the
BCL to its initial value.

This conÞrms that unidirectional pinning can be achieved in
detailed ionic models by changing only the pacing frequency.
However, these results need to be interpreted carefully. In
particular, it is well known that a change in BCL results in
a change in CV restitution as follows [22,23]: A decrease
(increase) in BCL yields a steeper (shallower) CV via
decreasing (increasing) DI. However, a change in BCL can
also affect change in the degree of calcium instability: A
decrease (increase) in BCL allows the calcium dynamics less
(more) time to equilibrate between beats, yielding a larger
(smaller) degree of instability. Thus, changing the pacing rate
yields competing effects from CV restitution and the degree
of instability. Here we Þnd that the change in CV restitution
is small in comparison to the change in instability, which is
dominant. Thus, node movement is induced by decreasing the
degree of instability (as predicted by the reduced model and
illustrated in Fig.14), i.e., by increasing BCL. In principle,
however, if the change in CV restitution dominates the change
in instability, we expect that node movement towards the
pacing site will be induced by decreasing BCL.

D. Jumping points and asymmetry
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