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ABSTRACT

Networks of excitable systems provide a flexible and tractable model for various phenomena in biology, social sciences, and physics.
A large class of such models undergo a continuous phase transition as the excitability of the nodes is increased. However, mod-
els of excitability that result in this continuous phase transition are based implicitly on the assumption that the probability that a
node gets excited, its transfer function, is linear for small inputs. In this paper, we consider the effect of cooperative excitations, and
more generally the case of a nonlinear transfer function, on the collective dynamics of networks of excitable systems. We find that
the introduction of any amount of nonlinearity changes qualitatively the dynamical properties of the system, inducing a discontinu-

https://aip.scitation.org/journal/cha
https://doi.org/10.1063/5.0103806
https://doi.org/10.1063/5.0103806
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0103806
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0103806&domain=pdf&date_stamp=2023-02-21
http://orcid.org/0000-0002-2665-2256
http://orcid.org/0000-0001-8949-6855
mailto:juanga@colorado.edu
mailto:morteza.nattagh@gmail.com
https://doi.org/10.1063/5.0103806


Chaos ARTICLE

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

FIG. 1. Transfer function hβ(x) in Eq. (5) interpolating between stochastic
(β = 0) and deterministic (β → ∞) spike dynamics.

The dynamics generalizes the Kinouchi–Copelli model presented in
Sec. II, taking into account that some nodes are in the refractory
period, i.e., a node cannot be excited immediately after being excited
in the previous step. The probability that a node i spikes at time t + 1
is given by

pt+1
i = δxi(t),0hβ





N
∑

j=1

Aijx
t
j



 , (5)

where δxi(t),0 is unity if xi(t) = 0 and zero otherwise, i.e., it is the
effect of the refractory period of one time step. The transfer func-
tion hβ gives the probability that a node becomes acsJ
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FIG. 3. Long-term values of even (circles) and odd (crosses) iterations of st

obtained from the mean-field map [Eq. (11)] as a function of λ for β = 0.5. (a)
The initial condition is random and uniformly chosen in [0, 1] for each λ. (b) The
initial condition is 0.01 for each λ.

The sum over N in the previous equation can be interpreted as
an average over nodes, which we will denote with 〈·〉. Assuming

independence of the random variables δxt
m ,0 and hβ

(

∑N
n=1 Amnxt

n)

)

,

we get

E
[

st+1
]

=
〈

δxt
m ,0

〉

〈

hβ

(

N
∑

n=1

Amnxt
n

)〉

. (9)

Now we use the fact that
〈

δxt
m ,0

〉

= 1 − st. Furthermore, for an
Erdős–Rényi network with large mean degree, the distribution of

the random variable
∑N

m=1 Anmxt
m is narrow about its mean, λst, so

we can approximate
〈

hβ

(

∑N
j=1 Aijx

t
j

)〉

' hβ

(

λst
)

to obtain

E [st+1] ' (1 − st)hβ (λst) . (10)

Focusing on the evolution of the expected value, we obtain the
approximate one-dimensional map,

st+1 ≡ f(st) = (1 − st)hβ (λst) . (11)

Iteration of the map [Eq. (11)] with s0 = 0.1 produces the black
squares as shown in Fig. 2, which agree well with the simulations
as N becomes large. Figure 3 shows the result of iterating the map
[Eq. (11)] for β = 0.5 with two different initial conditions for each
value of λ: for panel (a), s0 is randomly and uniformly chosen in
(0, 1), and in panel (b), s0 is always 0.01.

To demonstrate how the map Eq. (11) can shed light into the
dynamics of the system, including its dependence on the initial con-
ditions as shown in Fig. 3, we plot the second iterate of the map,
f(2)(s) vs s in Fig. 4 for β = 0.5 and λ = 1 (top panel), λ = 2 (middle

panel), and λ = 5 (bottom panel). For λ = 1, the only fixed point
is s = 0. As λ increases, a stable positive fixed point is created at
λ = λc, such that for λ = 2, there are two stable fixed points. For
λ = 5, there is a band of marginally stable period-2 orbits around
s = 0.5. This band appears at λ = 4 and grows in size as λ is
increased. Note that even for this high value of λ, the fixed point
s = 0 remains stable, as can be seen in the inset that shows that the
derivative f′(0) is less than one (it is, in fact, 0). The inset also shows
that although the fixed point s = 0 (the absorbing state) is stable, its
basin of attraction is very small. With these observations, one can
explain the qualitative features of Fig. 3 as follows. In panel (a) for
λ > 4, initial conditions that fall inside the band of fixed points alter-
nate between two values, producing the cloud of points that grows
in size as the size of the band grows. For λc < λ < 4, almost all ini-
tial conditions fall within the basin of attraction of the positive stable
fixed point, but a few get attracted to the still stable fixed point s = 0.
For λ < λc, all initial conditions get attracted to the stable fixed point
s = 0. In panel (b), the initial condition s0 = 0.01 belongs to the
basin of attraction of s = 0 up to approximately λ ≈ 3.7. Beyond
that, the orbit gets attracted to the stable fixed point first and to a
period-2 orbit thereafter.

While some specific details about the bifurcation diagram
depend on the shape of the transfer function hβ (such as the contin-
uous band of marginally stable period-2 orbits), the general behavior
of the system is as follows: for β = 0, there is a second-order phase
transition from the subcritical to the supercritical regime, and a sub-
sequent transition to an oscillatory regime. For β > 0, however, the
transition is discontinuous and occurs at a value of λ larger than one.
The absorbing state s∗ = 0 remains stable, but its basin of attrac-
tion is extremely small. The phase diagram of the model is presented
in Fig. 5.

V. HYSTERESIS AND FINITE SIZE EFFECTS

In Sec. IV, we found that for β > 0 the transition from the
subcritical to the supercritical state is discontinuous. However, a
mean-field analysis that assumed N → ∞ revealed that the absorb-
ing state s∗ = 0 remains stable even for λ > λc. Therefore, it is
important to understand how finite-size effects can drive the sys-
tem away from the absorbing state. In this section, we address this
by studying numerically and analytically the behavior of the system
with initial conditions where only one node is excited, i.e., s0 = 1/N.
Note that in the thermodynamic limit, and using the mean field
description derived above, this would yield st = 0 for t > 0 due to
the linear stability of the absorbing state.

First, we study numerically the long-term behavior of the sys-
tem under these initial conditions. For a given realization of the
dynamics out of the oscillatory regime, the system either falls into
the absorbing state st → s∗1 = 0 or it reaches a steady state with
st ≈ s∗2 > 0. In Fig. 6(a), we show the probability distribution func-
tion (PDF) of s∗ in terms of β obtained from 106

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

D
ow

nloaded from
 http://pubs.aip.org/aip/cha/article-pdf/doi/10.1063/5.0103806/16745996/023134_1_online.pdf

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

D
ow

nloaded from
 http://pubs.aip.org/aip/cha/article-pdf/doi/10.1063/5.0103806/16745996/023134_1_online.pdf

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

and using independence, we find

E [s1] = 〈
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state and the supercritical state, but the basin of attraction of the
absorbing state is typically very small. The phase diagram for the
system is shown in Fig. 5 in the limit N → ∞.

We also studied the behavior of the model for large but finite
networks. As a representative case of initial conditions consisting
of a small number of excited nodes, we studied in detail the case
of a single initially excited node. Using probabilistic arguments, we

https://aip.scitation.org/journal/cha
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which admits the solution pt
i = λtui, where ui and λ are the eigen-

vector and (largest) eigenvalue of the A matrix. Equation (A1) holds
for the case where at least one node can excite another node. Now
let us consider the case where two excited nodes are necessary for
exciting one node. Then this equation changes to

pt+1
i = (1 − pt

i)



η + (1 − η)



1 −

N
∏

j>k

(1 − pt
jp

t
kAijAik)







 , (A3)

which for small p limit and η
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