


1 Introduction

Ten thousand children need to be allocated into ten schools, each accommo-

dating one thousand of them. The schools are not the same, and parents

may rank them in di�erent ways. However, if all children are considered

equal, then a social lottery, where each student has an equal chance to at-

tend each of the ten schools, seems to be the best solution.1 This procedure

is egalitarian | everyone gets the same lottery | and feasible. But is it

e�cient? Speci�cally, is there no other procedure such that ex-ante, before

people know their allocated school, they will get a better lottery?

If individual preferences over the schools are not the same, then this

procedure may be ine�cient, for example, if each school is ranked best by

exactly 1000 parents. It is true that if all individuals are expected utility

maximizers and have the same preferences over lotteries (and in particular,

over the schools), then this procedure leads to an e�cient allocation. This is

also the case if all have the same quasi-concave preferences, i.e. preferences

for randomization over lotteries. But if preferences are quasi-convex, and a

mixture of two indi�erent lotteries is inferior to the mixed lotteries, then we

show that this procedure is never e�cient, regardless of whether individual

preferences are the same or not. Such preferences are implied by some well

known alternatives to expected utility theory (for example, Tversky and

Kahneman’s [39] Cumulative Prospect Theory, where risk aversion implies

quasi-convexity. See discussion below).

We analyze �rst an economy where N types of goods with k units each

need to be allocated, one for each of Nk agents. All agents have strict pref-

erences over the basic goods, and continuous, monotone (with respect to

�rst-order stochastic dominance), and strictly quasi-convex preferences over

1For example, divide the students into ten groups A1; : : : ; A10 of size 1000 each. Choose

with probability 1
10 one of the ten permutations �1; : : : ; �10 of (1; : : : ; 10), where �j(i) =

(i+ j � 1) (mod 10) + 1, j = 1; : : : ; 10.
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such lotteries by multiplying the probabilities of the two stages, this extra

randomization will reduce participants utilities. But if decision makers in-

stead satisfy the compound independence axiom, according to which if they

prefer q to q0 they will prefer to replace q0 with q in any compound lottery

that includes the former as an outcome, then such randomizations will not

change agents’ welfare.

Our analysis depends on the assumption that individual preferences over

lotteries are quasi-convex. Expected utility, where preferences are linear

in the probabilities, is the boundary case. Strict quasi-convexity is for ex-

ample the case with the popular family of rank-dependent utilities models

(Quiggin [31]), which also includes Yaari’s [46] dual theory, as well as Tver-

sky and Kahneman’s [39] Cumulative Prospect Theory, where risk aversion

implies quasi-convexity. Other models which can exhibit quasi-convexity in-

clude quadratic utility (Chew, Epstein, and Segal [11]), and K�oszegi and Ra-

bin’s [24] models of reference-dependence. In addition, Machina [25] pointed

out that quasi-convexity occurs if, as is common in many applications such

as insurance purchasing, before the lottery is resolved agents can take ac-

tions that a�ect their �nal utility. If the optimal action depends on the

probabilities, the induced maximum expected utility will be convex in the

probabilities, meaning that even if the underlying preferences are expected

utility, induced preferences over the optimal lotteries will be quasi-convex.

The experimental evidence on quasi-convexity versus quasi-concavity is

mixed. Most of the experimental literature that documents violations of

expected utility (e.g., Coombs and Huang [13]) found either preference for

randomization or aversion to it. Camerer and Ho [9] �nd support for quasi-

convexity over gains and quasi-concavity over losses. An example of behavior

that distinguishes between the two attitudes to mixture is the probabilistic

insurance problem of Kahneman and Tversky [23]. They showed that in

contrast with experimental evidence, any risk averse expected utility max-

imizer must prefer probabilistic insurance to regular insurance. Sarver [33]
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pointed out that this result readily extends to the case of quasi-concave pref-

erences. In contrast, quasi-convex preferences can accommodate aversion to

probabilistic insurance together with risk aversion (for example, risk-averse

rank-dependent utility; see Segal [34]). Sarver further illustrates that quasi-

convex preferences are consistent with increasing marginal willingness to pay

for insurance at some levels of coverage; another plausible property that in

most models requires violation of risk aversion. In the context of group de-

cision making, Dillenberger and Raymond [17] show that quasi-convexity of

preferences in the individual level is equivalent to the consensus e�ect: indi-

viduals tend to conform to the choices of others in group decisions, compared

to choices made in isolation.

The idea of using lotteries to allocate indivisible goods is not new (see,

for example, Diamond [14], Hylland and Zeckhauser [22], and Rogerson [32]).

Moreover, the possible existence of an optimal solution that induces each

individual to face a binary lottery was already discussed in Hylland and

Zeckhauser [22] under expected utility preferences. Our approach di�ers from

these works. We show that in a large economy with quasi-convex preferences,

any ex-ante e�cient solution must use only binary lotteries. Also, as long

as individuals simplify compound lotteries by multiplying the probabilities,

randomizing among these binary lotteries (thus giving identical people the

same ex-ante lottery) is always suboptimal.

In this paper we employ a strong notion of ex-ante e�ciency, which takes

into consideration individual preferences over lotteries. Two weaker notions

of e�ciency were previously studied, ordinal e�ciency and ex-post e�ciency,

both only depend on ordinal rankings of the �nal goods. As we remark in

Section 2.1, our results imply that many of the popular allocation mechanisms

used in the literature are ex-ante ine�cient. For example, random serial

dictatorship, that assigns the order of individuals using uniform distribution,

is ine�cient as it typically implies that each individual will face a lottery

with more than two elements in its support. Note that this ine�ciency relies
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only on the ordinal property of the preferences over lotteries, namely that

they are quasi-convex in probabilities.

The stronger notion of e�ciency we consider, which is natural once indi-

viduals preferences over lotteries are taken into account, makes it harder to

achieve strategy proofness, a property that ensures that it is always optimal

for agents to truthfully report their preferences over lotteries. This raises the

questions of who can use our results and how. We discuss this issue at length

in Section 4. While not always possible, we argue that in many situations

social planners can collect at least partial information about cardinal prop-

erties of preferences, and our results can guide them how to locally improve

upon existing popular methods (a similar approach was suggested by Ab-

dulkadiro�glu, Che, and Yasuda [2]). Moreover, empirical and experimental

data regarding individual preferences can be collected and used in order to

estimate ideal solutions. Such methods are used in various situations, for

example, in medical decision making (Wakker [44]).

The paper is organized as follows. Section 2 lays out the basic problem

in a �nite environment and states our main results. Section 3 studies two

possible extensions: the case where the number of agents and units is not

the same, and the case of a continuum economy. Section 4 comments on

the applicability of our approach. In Section 5 we discuss the bene�t of a

pre-randomization over the allocation lotteries. Section 6 concludes with a

further discussion of binary lotteries and the applicability of our results. All

proofs are in the Appendix.

2 Finite Economies

Consider an economy with Nk individuals and with k units of each of N > 3
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2.1 Ex-Ante E�ciency

We �rst characterize solutions q that are feasible, that is, satisfy equations (1)

and (2), and are ex-ante Pareto e�cient, in the sense that there is no solution

~q such that ~qn � qn for all n and ~qm � qm for some m. As preferences

are continuous over a compact domain, feasible e�cient allocations exist.

We show that in such allocations, and without any further assumptions on

individual preferences, all but ‘not too many’ individuals obtain either a

degenerate lottery or a lottery with positive probabilities on two goods only.

De�nition 1 A lottery qn is binary if qni > 0 for no more than two outcomes.

Theorem 1 Let q be a feasible and Pareto e�cient solution. Then for any

three goods xr; xs; xt, there is at most one person n such that qnr ; q
n
s ; q

n
t > 0.

This result implies that to detect violations of ex-ante e�ciency, it is

enough to observe an allocation in which two individuals receive lotteries that



generality, one of the supporting slopes to the indi�erence curve of person

n through (qnt ; q
n
r ) is weakly steeper than one of the supporting slopes to

the indi�erence curve of person m through (qmt ; q
m
r ). Take a line with slope

between these two values. To make both agents better o�, transfer probabil-

ities from one agent to another as depicted in the �gure, a violation of the

e�ciency assumption. If, instead, individuals’ ordinal rankings of the goods

are not identical, then the two agents can trade in the probabilities of any

two goods that they rank di�erently to improve ex-ante welfare.
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Figure 1: Changes in the allocations of individuals m and n

1

As we explain below, the arguments above also apply to agents with

di�erent expected utility preferences.

Theorem 1 implies a limit on the number of individuals who can receive

a non-binary lottery.

Corollary 1 The number of individuals who hold non-binary lotteries in

any feasible and e�cient allocation is bounded above by
�
N
3

�
.
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The number of subsets of f1; : : : ; Ng where no two elements have an

intersection with more than two numbers is bounded above by
�
N
3

�
, which

is the case where all subsets have three elements each.4 Since the number

of individuals who hold non-binary lotteries is bounded above by
�
N
3

�
while

the total population size is Nk, their fraction becomes arbitrarily small as k

increases.

While for exposition purposes we con�ne our attention to the case of strict

quasi-convex preferences, Theorem 1 generally also holds under expected

utility, which is linear (and hence also weakly quasi-convex) in probabilities.5

Under expected utility, if all agents have the same preferences over lotteries,

then there are many e�cient solutions, including interior ones. Our results

are thus more prominent once preferences are cardinally di�erent. More

precisely,

Proposition 1 Consider two expected utility agents m and n with utility

functions over �nal outcomes um and un, respectively. For any three goods

xr, xs, and xt, if q is a feasible allocation with both qnr ; q
n
s ; q

n
t > 0 and

qmr ; q
m
s ; q

m
t > 0, and if

um(xs)� um(xt)

um(xr)� um(xs)
6= un(xs)� un(xt)

un(xr)� un(xs)

then q is ine�cient ex-ante.

In words, if the slopes of the two agents’ indi�erence curves in the cor-

responding probability triangles are not the same, then any allocation that

gives both agents lotteries with positive probabilities on these three goods

4This bound may be tighter under further assumptions on individual preferences. See

for example the case of same preferences in Section 2.2.
5Assuming that all individuals are expected utility maximizers, Hylland and Zeck-

hauser [22] use competitive equilibrium with equal incomes to show the existence of a

solution in which almost all agents receive a binary lottery. Our result holds without

relying on any market mechanism.
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is ine�cient. The proof is identical to the one given in the appendix for

Theorem 1 and is omitted.

There are many popular mechanisms that can be used to allocate objects

among a group of agents. One example that is broadly used and is easy to

implement is random serial dictatorship. Randomly order the Nk individu-



Importantly, this argument only relies on simple, observable information:

quasi-convexity of preferences and the size of the supports of the lotteries

that are used.

Assuming expected utility, Bogomolnaia and Moulin [7] show how ran-

dom serial dictatorship, which uses uniform distribution to rank agents, is

not necessarily even ordinally e�cient, as it may induce for each agent a

distribution over the goods that is stochastically dominated, with respect to

that agent’s ordinal preferences, by another feasible distribution. Their sug-



Theorem 2 Suppose that �1 = : : : =�Nk =�. Then:

1. Ideal solutions exist.

2. The number of di�erent binary lotteries used in any ideal solution is

bounded above by M =
j
N2

4

k
.

3. An ideal solution yields all but at most M =
j
N2(N�2)

8

k
agents a binary

lottery.



used involves outcomes xi and xj with i < j, then since all lotteries on

outcomes better than xi dominate it and all lotteries on outcomes inferior to

xj are dominated by it, such lotteries cannot be part of the ideal solution.

Similarly, the bound on the number of agents who hold non-binary lot-

teries (which for N > 4 is lower than the
�
N
3

�
bound from the general case

of Theorem 1) is the number of non-dominated lotteries with three possible

outcomes that can simultaneously be used. Note that many individuals may

hold the same binary lottery, but only one individual can hold any non-binary

lottery.

The proofs of parts 2 and 3 of Theorem 2 only use the requirement that

the lottery received by one person cannot dominate the lottery received by

another. The actual number of binary lotteries used in an ideal solution can

be much smaller than the upper bound suggested by the theorem. Theorem 3

of Section 3.1 identi�es conditions under which the set of binary lotteries in

q is either f(q1; qi)gNi=2 or f(qi; qN)gN�1
i=1 . The number of binary lotteries used

in these cases is N�1, signi�cantly less than the bound obtained in part 2 of

Theorem 2. For example, for N = 10, the conditions of Theorem 3 imply 9

binary lotteries, whereas the bound of Theorem 2 is 25. Note that the lower

bound on the number of binary lotteries to be used is
�
N
2

�
, where dxe, the

ceiling of the real number x, is the lowest integer greater than or equal to x.

This will be the case when a feasible solution is obtained by a set of lotteries

(q1; qN); (q2; qN�1); : : : that are all equally attractive in �.

3 Extensions

We discuss two possible extensions to our basic framework. We �rst analyze

assignment problems where all agents have the same preferences, but the

number of units to be allocated is not equal to the number of agents. Second,

we consider a continuum economy with the same mass of agents and goods.
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Theorem 3 Suppose that all Nk agents have the same preferences and that

x1 � : : : � xN . If xN is a terrible outcome, then all the binary lotteries used

by an ideal allocation q are of the form (qi; qN), i = 1; : : : ; N � 1, and for a

su�ciently large k, they are all used. Parallel results hold for the case where

x1 is an excellent outcome, with the binary lotteries (q1; qi), i = 2; : : : ; N .

If there are more agents than units, de�ne a new good xN+1 which is

\receive nothing." At least in the case of school allocation, this may well be

a terrible outcome. Theorem 3 implies that in that case, almost all children

face a lottery where there are two possible outcomes: either they go to a

speci�c school, or they stay at home. In other words, they face uncertainty

regarding acceptance, but not regarding the school into which they will be

accepted. Equality implies that the better the school, the less likely is a

holder of a lottery for this school going to win.

3.2 Continuum Economies

Consider a continuum economy with a unit mass A of N equally sized (with

respect to the Lebesgue measure �) types of agents A1; : : : ;AN . There is

a unit mass B of N goods x1; : : : ; xN to be allocated among them, where

the mass of each unit is 1
N

.8 Each of the individuals of type i has strictly

quasi-convex preferences �i over lotteries over the N goods.

Our aim in this paper is to analyze possible mechanisms for the alloca-

tion of goods which are desired by all, as otherwise there is no need for a

8In fact, we can assume J types of goods, and that both the N types of individuals,

as well as the J types of goods, are not of same size. However if the sizes are rational

numbers, we can assume without loss of generality that J = N and the sizes of the di�erent

goods are the same; and if they are irrational, we’ll obtain our results using continuity,

where the economy is the limit of economies with rational sizes. We therefore assume

throughout J = N and that the sizes of the types of agents and of the goods are all 1
N .

See Footnote 10 below for a further generalization.
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Maniquet [26]). We show however that in the present context, the continuum

economy guarantees the existence of no-envy allocations.

Theorem 4 A feasible and e�cient allocation for the continuum economy

with strictly quasi-convex preferences yields all agents a binary lottery. The

set of no-envy such allocations is not empty, and if all agents have the same

preferences, then equality with such lotteries is obtained.

We o�er here an outline of the proof. The �rst step shows, similarly to

the proof of Theorem 1, that e�cient allocations must yield all agents a bi-

nary lottery. Next, we start from an allocation where everyone is facing the

lottery that gives them an equal chance for each of the goods and employ a

known technique of demand-sets convexi�cation (see Mas-Colell, Whinston,

and Green [28, Section 17.I] which is based on Starr [37]) to obtain a com-

petitive market equilibrium prices and allocations. Given these prices, all

agents will maximize their utility along the same budget set, so No-Envy is

guaranteed. Competitive equilibria are feasible and e�cient, hence the claim

of the theorem.

There is however one issue that requires special attention in which our

analysis of the market equilibrium di�ers from the literature. Formally, the

lottery (x1; q1; : : : ;xN ; 1�
PN�1

i=1 qi) is represented as the vector (q1; : : : ; qN�1)

in the N�1-dimensional simplex. This is di�erent from the standard model,

where the domain of preferences is not bounded from above. To see why

this may create a problem, consider Example 1 in the Appendix with N = 3

where x1 � x2 � x3. The preferences of this example are monotonic in the

probabilities q1 and q2 in the sense that if (q01; q
0
2) 	 (q1; q2), then (q01; q

0
2) �

(q1; q2). But they do not satisfy monotonicity with respect to �rst order

stochastic dominance, in the sense that for " > 0, (q1 + "; q2 � ") � (q1; q2),

and equilibrium does not exist. We show in the proof of Theorem 4 that this

stronger version of monotonicity eliminates the existence problem.
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Remark 1 Let T be the number of lotteries used in the proposed solution.

Then for h = 1; 2; :::; T there is a continuum of agents who receive the same

binary lottery, say (xh; �h; yh; 1��h) for some outcomes xh; yh and �h 2 [0; 1].

The implementation of this, so that the fraction of the people in this group

that receives xh is �h, can be guaranteed by using the appropriate law of large

numbers for a continuum of independent random variables. Such approach

appears, for example, in Sun [38], and we adopt here his measure theoretic

framework.10

4 Is the Data Available?

In this paper we are interested in properties of the induced allocation of

lotteries for any given set of preferences, as our aim is to emphasize the

implications of taking individual preferences over lotteries into consideration

in evaluating stochastic allocation mechanisms. To that extent, we ignore the

question of strategy-proofness, that is, how to guarantee that agents truly

reveal their preferences. As Zhou [47] shows, under expected utility, which

is a subset of all quasi-convex preferences, there exists no mechanism that

satis�es symmetry, ex-ante Pareto optimality, and strategy-proofness. As

global strategy proofness cannot be achieved, we ask instead whether there

is any reliable data available to policy makers, and if only vague information

is available, can it still be useful?

The �rst question to answer is how do decision makers evaluate lotteries?

There is a lot of empirical research trying to answer this question, mostly

with respect to lotteries with monetary payo� (see, for example, the surveys

10We assumed that there are N blocks of agents so that the analysis of the continuum

will parallel the �nite case. If there is a continuum of types where the measure of each

type is zero, then as in Mas-Colell, Whinston, and Green [28, p. 629] the actual allocation

doesn’t require the analysis of this remark, as almost all agents will have a unique lottery

in their demand set.
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of Camerer [8] and Starmer [36]). One of the most popular group of models

is based on the idea that the evaluation of the probability of an outcome

depends on its rank in the support of the lottery. This family includes Quig-

gin’s [31] rank-dependent utilities, Yaari’s [46] dual theory, and Tversky and

Kahneman’s [39] cumulative prospect theory. For x1 � x2 � : : : � xN , the

rank dependent functional form is given by

V (q) = u(x1)�(q1) +
PN

i=2 u(xi)
h
�
�Pi

j=1 qj

�
� �

�Pi�1
j=1 pj

�i



practically used to improve medical decisions (Wakker [44]). It is well known

that measures of risk aversion tend to be context-speci�c and vary across do-

mains (see, among others, Weber, Blais, and Betz [45] or Hanoch, Johnson,

and Wilke [20]). Yet, and even though there is not yet a consensus about the

\best" approach to use (Charness, Gneezy, and Imas [10]), methods analo-

gous to those employed in �nancial, health/safety, recreational, ethical, and

social decisions (as in Weber, Blais, and Betz [45], or the ones discussed in

Finkelstein, Luttmer, and Notowidigdo [18] to estimate health state depen-

dence of the utility functions) can be used in the domain of lotteries over

apartments or schools.

Even without any information about the speci�c model used by members

of society our results suggest ways for welfare improvements. Sometimes

the social planner has information about other characteristics of the agents

that can be used to assess their intensity of preferences over allocations.

For example, it is plausible that a resident of a certain neighborhood would

put higher premium on attending a school in close proximity compared to

someone who considers only remote schools. Similarly, a religious person will

naturally have stronger preferences for schools that have religious components

in their operations or curriculum compared to someone who does not take

this dimension into consideration.

Such information can be used in the following way. Starting from an

allocation that results from a strictly strategy-proof mechanism with respect

to the ordinal rankings (for example, random serial dictatorship), ex-ante



preferences and large economies, the authors o�ered a mechanism that allows

students to signal their cardinal preferences, and showed that it (ex-ante)

Pareto dominates the popular deferred acceptance mechanism. Their new

mechanism is typically ex-ante ine�cient and is only ordinally strategy-proof.

5 Ex-ante Lotteries

If preferences are strictly quasi-convex, then giving two identical agents the

same interior outcome must be ine�cient, as moving in opposite directions

along a supporting plane of the indi�erence curve will make both better o�.

Instead of equality in outcomes, allocation mechanisms will seek a weaker

notion of equality, where identical agents will be indi�erent between their

respective outcomes. This is indeed the conclusion from Theorem 2, where

everyone is indi�erent between all allocated lotteries, even though they are

not the same.





it is yet to be examined in scrutiny for the speci�c context of allocation

mechanisms.13

6 Concluding Remarks

The use of binary lotteries is pervasive in economics. Many experimental

works are conducted with choices among such lotteries (or between them

and sure outcomes), where the main rationale for using binary lotteries is

that they are easily interpretable. Some recent theoretical papers use sim-

plicity criteria to argue for the attractiveness of binary lotteries in terms of

minimizing complexity costs (for example, Puri [30]), and of binary acts, that

are always ‘well-understood’ and can be used as a tool for making di�cult

comparisons (Valenzuela-Stookey [40]).

In our setting, that (almost) everyone should receive a binary lottery fol-

lows mathematically from the assumption that all individual preferences are

quasi-convex. As argued above, this gives us a simple necessary condition

that can be used to assess whether an allocation of lotteries is ex-ante e�-

cient. But as a social mechanism, binary lotteries have another independent

attraction of their own. When facing a lottery over a set of outcomes on

which they do not have full information, it is quite natural for people to look





they can be done without violating eqs. (1) and (2). In both panels, the

probability of xt is measured on the horizontal axis and that of xr on the

vertical one. The only values of q that will be changed are those of qai for

a = m;n and i = r; s; t. We will therefore deal with the induced preferences

over the above triangles and ignore the rest of the probabilities. To simplify

notation, we write (qat ; q
a
r ) for (qat ; �qa� qat � qar ; qar ), which by itself stands for

(qat ; �qa � qat



vector in the compact probabilities simplex �N�1, hence it follows by stan-

dard arguments that there is a subsequence of qh, without loss of generality

the sequence itself, such that for all n = 1; : : : ; Nk, qn;h ! qn;�. The vector

q� = (q1;�; : : : ; qNk;�) satis�es eqs. (1) and (2), hence it is a solution. Since V

is continuous it satis�es equality, and by the continuity of V , V (qn;�) = v. It

follows by the de�nition of v that for any solution q = (q1; : : : ; qNk) satisfying

equality, qn;� � qn, n = 1; : : : ; Nk. �

Lemma 2 Let q be a feasible solution in which for some two individuals m

and n, qn � qm. Then there is a feasible solution �q where qn � �qn � �qm � qm,

and for ‘ 6= n;m, �q‘ = q‘.

Proof: Since qn � qm, it follows by monotonicity with respect to �rst-order

stochastic dominance (in short, by FOSD) that there are goods r and s such

that xr � xs and such that " = minfqnr ; qms g > 0, as otherwise qm � qn.

In both pro�les below, q‘ does not change for all ‘ 6= n;m. For "0 6 ", let

�qn = (qnr �"0; qns +"0; qn�r;s) and �qm = (qmr +"0; qms �"0; qm�r;s). For a su�ciently

small "0 > 0, qn � �qn � �qm � qm. �

Lemma 3 The solution q� as in Lemma 1 is e�cient.

Proof: Let q� be as in Lemma 1, and suppose that there is ~q = (~q1; : : : ; ~qNk)

such that wlog V (~q1) > : : : > V (~qNk) > V (q1;�) = : : : = V (qNk;�), where at

least one of these inequalities is strict. Applying Lemma 2 Nk � 1 times

at most, we can create a feasible allocation �q such that for all n, V (�qn) >

V (q1;�). Let w = minfV (�qn)g and de�ne

b = inf
n

max
n
fV (qn)g �min

n
fV (qn)g : q is feasible and min

n
fV(qn)g > w

o
As in the proof of Lemma 1, there is a feasible solution q̂ for which b is

obtained. By Lemma 2, b = 0. This means that q̂ satis�es equality, a

contradiction to the de�nition of q�. �

27



By Lemma 1, the feasible solution q� satis�es equality, and by Lemma 3

it is e�cient, hence it is an ideal solution. �

2. The number of di�erent binary lotteries used in any ideal solution is

bounded above by M =
j
N2

4

k
: Let B be the set of binary lotteries used by

an ideal solution q. We show that there is t� such that for all non-degenerate

(qr; qs) 2 B, r 6 t� < s.

Case 1: If one of the lotteries in B is degenerate, say �t� , then by equality

and FOSD, for any (qr; qs) 2 B it must be the case that r < t



non-binary lotteries allocated by it. That is, C = ffr1 < r2 < : : : < rdg :

(qr1 ; qr2 ; : : : ; qrd
) is one of the lotteries allocated by qg.

Similarly to part 2 above, we show that there is ‘� such that for all

fr1 < : : : < rdg 2 C, r1 6 ‘� < rd. If there is no ‘ for which there exists

fr1 < : : : < rdg 2 C such that ‘ < r1, then all lotteries with indexes in C

must have x1



Proof of Theorem 3: Denote by qT and qE the degenerate lotteries that

yield xN and x1 with probability 1, respectively. For q; q0, let [q; q0] = f�q +

(1 � �)q0 : � 2 [0; 1]g. A set A of lotteries is above set B if for all q 2 A,

[q; qT ] \ B 6= ∅. It is below B if for all q 2 A, [q; qE] \ B 6= ∅. Since HT

is the convex hull of points f(qi; qN)gN�1
i=1 , every lottery q is either above or

below HT . By quasi-convexity, if q � �xN�1
then q is above HT , hence so is

q such that q � �xN�1
. By FOSD, for i > j 6= N with qi > 0, (qi; qj) � �xN�1

.

If it is part of a solution q satisfying equality, then by the above argument

all lotteries allocated by q are above HT , hence q is not a feasible solution.

It thus follows that all binary lotteries in an ideal solution must have xN as

one of its two outcomes.

By Theorem 2 part 3, an outcome xi, i 6= N , can receive positive prob-

ability at no more than
j
N2(N�2)

8

k
lotteries, hence for a su�ciently large k,

some of its occurrences must be in binary lotteries. By the �rst part of the

theorem, the only possible such lottery is (qi; qN), hence the theorem. The

proof of the case where x1 is excellent is similar. �

Proof of Theorem 4: We show �rst that an e�cient solution yields ev-

eryone a binary lottery. Suppose that q is an e�cient solution with  > 0

mass of individuals receiving non-binary lotteries. Since N is �nite, we may

assume without loss of generality that they all receive with positive prob-

abilities each of the three outcomes xr; xs; xt where r > s > t. That is,

�fa : fi(a) > 0; i = r; s; tg > 0. As � is �-additive, it follows that for some

" > 0, �(A) > 0, where A = fa : fi(a) > "; i = r; s; tg.
For every a 2 A, let Da be the triangle f(qt; qr) 2 <2

+ : qt + qr 6

�qa = fr(a) + fs(a) + ft(a)g. Let �a be the slope of a supporting line to

the indi�erence curve in Da through (ft(a); fr(a)). Let � � be such that

�(a : �a > � �); �(a : �a < � �) 6 1
2
�(A). Divide A into two sets A1 and

A2 such that �(A1) = �(A2) = 1
2
�(A), for all a 2 A1, �a > � � and for all

a 2 A2, �a 6 � �. We now follow the procedure described in the proof of The-

30



orem 1, where individuals m and n are replaced with A1 and A2. It follows

that all agents receive a binary lottery.

Let �N�1 = f(�1; : : : ; �N�1) 2 <N�1
+ :

PN�1
i=1 �i = 1g be a prices simplex.

For every � 2 �N



correspondences of the various agents are given by

D1(�) = D2(�) =

8>>>>>><>>>>>>:

(1; 0) � 6 1
2

(1+�
3�
; 0) 1

2
< � < 3

f(3+5�
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