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Abstract
In this paper, a strong form meshfree collocation method is developed for two-dimensional single-body frictional contact 
problems. In this approach, a point-wise Taylor series approximation and generalized moving least squares approach is used 
to construct numerical differential operators at discrete points within the domain. The differential operators are then used 
to spatially discretize and solve the governing partial differential equations. Contact constraint conditions are formulated 
with the penalty approach. To demonstrate the efficiency of the method, benchmark problems in frictionless and frictional 
contact relevant to a rigid pile and an elastic foundation contact are provided. The numerical results are also compared with 
the finite element solutions to verify robustness and accuracy of the method.
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1  Introduction

The importance of computational contact mechanics in 
engineering applications has grown considerably over the 
past few decades. Contributions from research in this field 
of study have produced robust and efficient methods with 
increased accuracy to predict mechanical contact phenom-
ena. However, due to the complicated non-linear phenomena 
inherent in contact problems, achieving robust predictions 
remains an elusive endeavor. At present, many approaches 
to contact are built on traditional weak-form-based finite 
element methods (FEM), mortar element method and bound-
ary element method (BEM). For instance, there are nite ele-
ment formulations dealing with large deformation contact 
problems that are based on master/slave contact strategies. 
Hallquist et al. [1] proposed the two- and three-dimensional 
contact algorithm in large-scale lagrangian computations. 
Simo et  al. [2] developed a nite element procedure for 

contact problems for the general case of fully nonlinear 
kinematics. Benson and Hallquist [3] introduced a contact 
algorithm that requires only a single surface definition for 
its analysis. Papadopoulos and Taylor [4] presented a nite 
element algorithm for the fully non-linear two-dimensional 
kinematics applicable to contact problems involving large 
deformations. Wriggers et al. [5] introduced a finite element 
method for contact using a third medium that is based on a 
space filling mesh in which the contacting bodies can move 
and interact.

The mortar element method [6–9] is a domain decompo-
sition-based discretization technique that adopted variational 
discretizations across subdomain boundaries. The mortar 
method presents the continuity condition at the contact inter-
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Moreover, using adaptive refinement on the contact region 
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where 𝜖T > 0 is the tangential penalty parameter and � is the 
coefficient of friction. Using backward Euler integrator to 
the penalty regularized spatial equations of evolution yields 
the following:

A trial state/return mapping algorithm is employed to deter-
mine the Coulomb frictional traction. For implementation, 
the computational algorithm for Coulomb frictional traction 
is then given by: 

1.	 The trial state is first computed by assuming no slip dur-
ing the increment: 

 where �T = (� − �⊗�)� on �c . Note that the normal 
contact pressure tN is previously given by tN = �N⟨g⟩ in 
Eq. (9).

2.	



795Engineering with Computers (2023) 39:791–807	

1 3

the discretized system of equations. In contrast to most 
meshfree methods, the proposed method can use any func-
tion with a conical shape as the weight function. This is 
because no differentiability for the weight function is 
required in the formulation. As long as the function is non-
negative and continuous, smoothness is not required. Thus, 
we use the non-differentiable functions

and

Bearing mind of the idea of moving least-square approxima-
tion, minimizing with respect to �(�̄) the discrete form of the 
weighted, discrete L2-norm given by

yields

where the matrices � and � can be defined by

where the polynomial vector �m(�I ;�̄) is defined in Eq. (20).
In Eq. (25), substituting � for �̄ and replacing �(�) with 

��
�
u(�) yield

where � = (�1, �2) be a 2-tuple of non-negative integers. In 
matrix form, Eq. (28) can be expressed as

where �i ’s are a 2-tuple of non-negative integers, e.g., 
�1 = (0, 0) , 

�
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which, in Cartesian components, has the equivalent form

where �ij is the Kronecker delta. For the discretization of 
Eq. (37) with the PDM, substituting Eq. (28) into Eq. (37) 
results in

(36)2𝜇� ⋅ � + 𝜆� ⋅ �(div�) = �̄ on 𝛤t

(37)𝜇(ui,j + uj,i)nj + 𝜆𝛿ijnj(uk,k) = t̄i on 𝛤t

(38)

N∑
J=1

{[(� + 2�)�
(1,0)

IJ
n1 + ��

(0,1)

IJ
n2]u1I + [��

(0,1)

IJ
n1

+ ��
(1,0)

IJ
n2]u2I} − t1(�I) = 0,

N∑
J=1

{[��
(0,1)

IJ
n1 + ��

(1,0)

IJ
n2]u1I + [(� + 2�)�

(0,1)

IJ
n2

+ ��
(1,0)

IJ
n1]u2I} − t2(�I) = 0

for �J ∈ �c in the case of stick region. For the slip case, 
equation is given by

For the discretization of Eq. (44) with the PDM, substituting 
Eq. (28) into Eq. (44) results in

for �J ∈ �c in the case of slip region.
To this end, the nonlinear system of equation can be writ-

ten as

where � is residual that is considered to be a nonlinear func-
tion of the solution vector � . A Newton–Raphson scheme 
apply to Eq. (46) in iteration j by

where ��
��

 as the tangent stiffness matrix � , and followed by 
the update

where the subscripts j + 1 and j correspond to the current 
and previous Newton–Raphson iteration of the current load 
step n, respectively.

Convergence criterion is defined by the ratioely.
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the last converged load step n. Convergence is assumed to 
occur when their relative ratios fall below a user specified 
tolerance TOL = 10−12 . For instance, the convergence crite-
rion in terms of the solution increment is given by

During the Newton–Raphson solution procedure, at each 
current iteration j + 1 , we follow subsequently described 
procedures: 

1.	 Compute the residual 
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�N = �T = 105 . Notice that, due to the symmetry, only a left 
half slab in Fig. 2 is modeled as the computational domain. 
In Fig. 3, we display the model of the non-uniformly distrib-
uted 558 collocation points on the half slab that was used 
for this study. The contact surface �c with a rigid obstacle 
is located on the bottom of the half slab and the symmetric 
boundary condition is applied on its right side.

Displacement field uxx and shear stress �xy distributions 
are presented in Fig. 4. As expected, on the contact surface 
at the bottom, the discontinuity of the displacement is clearly 
visible on the left zone, indicating slip along the contact 
surface. The distribution of the shear stress is qualitatively 
close to the result of Fig. 11 in Renaud and Feng [44]. To 
verify accuracy of the method, contact tractions obtained 
from the strong form collocation (COL) method are com-
pared with the results from the FEM using ABAQUS in 
Fig. 5. Normal and tangential traction profiles are similar to 
each other. However, as shown in Fig. 5b certain differences 
exist around stick/slip transition area between the two meth-
ods. Quantifying the cause is an area of active research, the 
results of which will be published in future works.

Figure 6 provides stick-slip response behavior on the con-
tact surface for various frictional coefficient values. To study 
the effect of the frictional coefficient on the contact surface, 

Fig. 4   Distribution of a the 
displacement uxx and b the shear 
stress �xy for an elastic solid on 
a rigid plate



799



800	 Engineering with Computers (2023) 39:791–807

1 3

the region of contact. A corresponding (relatively high) 
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4.3 � Hertzian contact problem

In this study, we examine error behavior of our method 
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However, the in-depth comparison against the FEM remains 
as a future work.

4.4 � Frictional contact between a rigid pile 
and an elastic foundation
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5 � Conclusion

In this paper, a strong form collocation method formula-
tion has been proposed for the solution of frictional con-
tact problems. The methodology was implemented for 

two-dimensional problems. The solution algorithm for 
frictional contact constraints is based on a penalty regu-
larization procedure. A full Newton–Raphson scheme is 
used to implement the residual form descretized governing 
equations. The proposed point collocation does not require 
any type of mesh, which eliminates numerical integration. 
Furthermore, when compared to other meshfree methods, 
the proposed point collocation method does require direct 
calculation of shape function derivatives; resulting in con-
siderable increases in computational speed. Direct discre-
tization of the governing partial differential equations by 
way of Taylor expansion and moving least squares is a key 
advantage of the proposed method.

The results from benchmark problems for frictional and 
frictionless contact problems were provided. The numeri-
cal results are compared with conventional finite element 
method to demonstrate that the methodology is robust and 
accurate along the contact surface. Results from a com-
parative analysis between the proposed method and FEM 
for the 2D elastic slab and a rigid plate problem shows the 
methods ability to accurately predict the solution field. This 
problem is often used to validate contact-based algorithms. 
The corresponding results for 2D elastic block and a rigid 
cylinder contact problem however considers effects of dif-
ferent Young’s Modulus E and load tx on contact angle. 
For this problem, the method was able to capture accurate 

Fig. 19   Contour plots of the 
displacements a uxx and b uyy 
for a rigid pile contact with an 
elastic foundation

Fig. 20   Contour plots of the 
stresses a �xx and b �yy for a 
rigid pile contact with an elastic 
foundation

Fig. 21   Comparison of initial and deformed shape for a rigid pile 
contact with an elastic foundation (a scale factor 15)
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The components of Kc matrix for stick case are

where KN
I1J1

 , KN
I2J1

 , KN
I1J2

 , and KN
I2J2

 can be obtained from Eq. 
(56). The component of stiffness matrix Kstick in Eq. (57) 
defined as

The components of � c
stick

 vector are

The components of Kc matrix for stick case are

The component of stiffness matrix Kslip in Eq. (59) defined as

The components of � c
slip
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