Research /mse/ en Using nanoscale membranes to clean water on the Moon /mse/2024/10/16/using-nanoscale-membranes-clean-water-moon <span>Using nanoscale membranes to clean water on the Moon</span> <span><span>Jeff Zehnder</span></span> <span><time datetime="2024-10-16T08:58:18-06:00" title="Wednesday, October 16, 2024 - 08:58">Wed, 10/16/2024 - 08:58</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/mse/sites/default/files/styles/focal_image_wide/public/2024-10/PD_Schematic.png?h=ccdfa82d&amp;itok=Z3Dck39T" width="1200" height="600" alt="Schematic of the membrane process."> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/mse/taxonomy/term/213"> Research </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/mse/taxonomy/term/424" hreflang="en">Anthony Straub News</a> </div> <span>Jeff Zehnder</span> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> <div><p><a href="/ceae/anthony-straub" rel="nofollow"><span>Anthony Straub</span></a><span> is making major advances in water purification technology for industry and human consumption on Earth and in space, with his work on a nanotechnology membrane process taking a major step toward commercialization, thanks to a new NASA grant.</span></p><p><span>An assistant professor in the Department of Civil, Environmental and Architectural Engineering at the , Straub’s research focuses on using membranes to improve water treatment.</span></p><p><span>“The membrane technology that is widely used now is essentially half a century old, and it has&nbsp;well-known limitations,” Straub said. “ It works well for many applications, but it has a tendency to let certain impurities through and it degrades if exposed to certain harsh chemicals.”</span></p><p><span>NASA has awarded Straub and one of his PhD students, Kian Lopez,</span><a href="https://www.nasa.gov/wp-content/uploads/2024/01/sbir-24-i-v2.pdf?emrc=668eb3a37021f" rel="nofollow"> <span>a phase one Small Business Innovation Research award</span></a><span> to develop a pilot water purification system for astronauts to use on a future Moon base.</span></p><p><span>Current space water purification systems are bulky and prone to repairs. The technology Straub’s lab has developed only requires a pump to pressurize water, reducing size and weight. Low weight is especially important in moon missions, where every kilogram of cargo can cost tens of thousands of dollars.</span></p><p><span>“Current membranes remove impurities based on size and charge and, as a result, allow for small impurities to bypass the membrane,” Straub said. “What we’ve designed traps a very small layer of air inside a membrane and the only way for the water to cross the barrier is by evaporating and then re-condensing on the other side, which impurities inherently cannot do.”</span></p><p><span>The entire process occurs over a 100 nanometer span, a distance 160 times smaller than the width of a human hair, and the water that results is nearly pure H2O – distillation quality — since it has been turned to steam and then back to liquid.</span></p><p><span>These new membranes can be made from a wide variety of materials; the advance is in modifying them to create the air trapping layer. Although the work has been a longtime focus of Straub, he had not considered space applications or commercialization until Lopez returned from an internship at NASA.</span></p><div><div><br>Schematic of the membrane process.</div></div><p><span>“My mentor at NASA said this technology looks promising and the biggest impact we could have would be to start our own company,” Lopez said.</span></p><p><span>Straub and Lopez decided to attend the New Venture Launch class together in the CU Boulder Leeds Business School, participating in campus technology transfer initiatives, including the New Venture Challenge and Lab Venture Challenge. They founded</span><a href="https://www.osmopuretechnologies.com/" rel="nofollow"> <span>Osmopure Technologies, Inc.</span></a><span> in January of this year.</span></p><p><span>Space is but one application. Other potential is in municipal water systems and industry, particularly semiconductor or computer chip manufacturing, which requires ultrapure water.</span></p><p><span>Although ultrapure sounds like a marketing buzzword, it has a</span><a href="https://www.astm.org/d5127-13r18.html" rel="nofollow"> <span>formal definition:</span></a><span> water free of all minerals, particles, bacteria, microbes, and dissolved gasses. The needs go far beyond water that is safe for human consumption.</span></p><p><span>“The minimum for ultrapure water in chip manufacturing is a 14-step process right now. The final product must contain less than one 10-nanometer particle per milliliter of water, which would be the density equivalent of having only a single person on the entire planet Earth,” Lopez said.</span></p><p><span>Semiconductor chips are manufactured in clean rooms, and ultrapure water is necessary to maintain temperature and humidity as well as to wash away residue produced during chip etching. Even the tiniest water impurities can damage the chips.</span></p><p><span>“Our work starts with NASA, but the beachhead market here on Earth is in ultrapure water production for semiconductors,” Straub said. “This is a huge potential market, and we have filed a provisional patents with CU Venture Partners.”</span></p><p><span>Straub is optimistic the grant will enable them to make significant progress in the coming months.</span></p><p><span>“This has been a four-year process, and at the beginning we didn’t know if it would work,” Straub said. “We started with theory and then went into the lab to test. The fabrication has gone through several iterations here in the CU labs. Now we are moving towards a commercial product, and the performance is impressive.”</span></p></div> </div> </div> </div> </div> <script> window.location.href = `/engineering/2024/10/16/using-nanoscale-membranes-clean-water-moon`; </script> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Wed, 16 Oct 2024 14:58:18 +0000 Jeff Zehnder 1072 at /mse Discovery could lead to longer-lasting EV batteries, hasten energy transition /mse/2024/09/19/discovery-could-lead-longer-lasting-ev-batteries-hasten-energy-transition <span>Discovery could lead to longer-lasting EV batteries, hasten energy transition</span> <span><span>Anonymous (not verified)</span></span> <span><time datetime="2024-09-19T14:56:11-06:00" title="Thursday, September 19, 2024 - 14:56">Thu, 09/19/2024 - 14:56</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/mse/sites/default/files/styles/focal_image_wide/public/article-thumbnail/chemical_biological_engineering_laboratory_20231113_jmp_032_jpg.jpg?h=06ac0d8c&amp;itok=sT46asgM" width="1200" height="600" alt="Michael Toney and team tested Li-ion battery coin cells for capacity loss over time."> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/mse/taxonomy/term/213"> Research </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/mse/taxonomy/term/423" hreflang="en">Michael Toney News</a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-content-media ucb-article-content-media-above"> <div> <div class="paragraph paragraph--type--media paragraph--view-mode--default"> </div> </div> </div> <div class="ucb-article-text d-flex align-items-center" itemprop="articleBody"> <div><p>Batteries lose capacity over time, which is why older cellphones run out of power more quickly. &nbsp;This common phenomenon, however, is not completely understood.&nbsp;</p> <p>Now, an international team of researchers, led by an engineer at CU Boulder, has revealed the underlying mechanism behind such battery degradation. Their discovery could help scientists to develop better batteries, which would allow electric vehicles to run farther and last longer, while also advancing energy storage technologies that would accelerate the transition to clean energy.&nbsp;</p> <p><a href="https://doi.org/10.1126/science.adg4687" rel="nofollow">The findings</a> were published Sept.&nbsp;12 in the journal Science.</p> <p>“We are helping to advance lithium-ion batteries by figuring out the molecular level processes involved in their degradation,” said <a href="/chbe/michael-f-toney" rel="nofollow">Michael Toney</a>, the paper’s co-corresponding author and a professor in the Department of Chemical and Biological Engineering. “Having a better battery is very important in shifting our energy infrastructure away from fossil fuels to more renewable energy sources.”</p> <p>&nbsp;</p> <div class="feature-layout-callout feature-layout-callout-small feature-layout-callout-float-right clearfix"> <div class="feature-layout-callout-inner element-max-width-padding"> <p>&nbsp;</p> <div class="image-caption image-caption-none"> <p><br> Michael Toney</p> <p>&nbsp;</p> </div> <p>&nbsp;</p> </div> </div> <p>Engineers have been working for years on designing lithium-ion batteries—the most common type of rechargeable batteries—without cobalt. Cobalt is an expensive rare mineral, and its mining process has been linked to grave <a href="https://e360.yale.edu/features/siddharth-kara-cobalt-mining-labor-congo" rel="nofollow">environmental and human rights concerns</a>. In the Democratic Republic of Congo, which supplies more than half of the world’s cobalt, many miners are children.&nbsp;</p> <p>So far, scientists have tried to use other elements such as nickel and magnesium to replace cobalt in lithium-ion batteries. But these batteries have even higher rates of self-discharge, which is when the battery’s internal chemical reactions reduce stored energy and degrade its capacity over time. Because of self-discharge, most EV batteries have a lifespan of seven to 10 years before they need to be replaced.&nbsp;</p> <p>Toney, who is also a fellow of the <a href="/rasei/" rel="nofollow">Renewable and Sustainable Energy Institute</a>, and his team set out to investigate the cause of self-discharge. In a typical lithium-ion battery, lithium ions, which carry charges, move from one side of the battery, called the anode, to the other side, called the cathode, through a medium called an electrolyte. During this process, the flow of these charged ions forms an electric current that powers electronic devices. &nbsp;Charging the battery reverses the flow of the charged ions and returns them to the anode.&nbsp;</p> <p>Previously, scientists thought batteries self-discharge because not all lithium ions return to the anode when charging, reducing the number of charged ions available to form the current and provide power.&nbsp;</p> <p>Using the Advanced Photon Source, a powerful X-ray machine, at the U.S. Department of Energy’s <a href="https://www.anl.gov/" rel="nofollow">Argonne National Laboratory</a> in Illinois, the research team discovered that hydrogen molecules from the battery’s electrolyte would move to the cathode and take the spots that lithium ions normally bind to. As a result, lithium ions have fewer places to bind to on the cathode, weakening the electric current and decreasing the battery’s capacity.</p> <p>“We discovered that the more lithium you pull out of the cathode during charging, the more hydrogen atoms accumulate on the surface,” said Gang Wan, the study’s first author at Stanford University.” This process induces self-discharge and causes mechanical stress that can cause cracks in the cathode and accelerate degradation.”</p> <p>Transportation is the single largest source of greenhouse gases generated in the U.S, accounting for <a href="https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions#:~:text=Transportation%20(28%25%20of%202021%20greenhouse,ships%2C%20trains%2C%20and%20planes." rel="nofollow">28%</a> of the country’s emissions in 2021. In an effort to reduce emissions, many automakers have committed to moving away from developing gasoline cars to produce more EVs instead. But EV manufacturers face a host of challenges, including limited driving range, higher production costs and shorter battery lifespan than conventional vehicles. In the U.S. market, a typical all-electric car can run about <a href="https://www.energy.gov/eere/vehicles/articles/fotw-1290-may-15-2023-model-year-2022-longest-range-ev-reached-520-miles#:~:text=Over%20time%2C%20the%20number%20of,on%20Environmental%20Protection%20Agency%20estimates." rel="nofollow">250 miles in a single charge</a>, about 60% that of a gasoline car. The new study has the potential to address all of these issues, Toney said.&nbsp;</p> <p>“All consumers want cars with a large driving range. Some of these low cobalt-containing batteries can potentially provide a higher driving range, but we also need to make sure they don’t fall apart in a short period of time,” he said, noting that reducing cobalt can also reduce costs and address human rights and energy justice concerns.&nbsp;</p> <p>With a better understanding of the self-discharge mechanism, engineers can explore a few ways to prevent the process, such as coating the cathode with a special material to block hydrogen molecules or using a different electrolyte.&nbsp;</p> <p>“Now that we understand what is causing batteries to degrade, we can inform the battery chemistry community on what needs to be improved when designing in batteries,” Toney said.&nbsp;</p> <p><em>Additional co-authors of the study included&nbsp;Oleg Borodin, Travis Pollard and Marshall Schroeder at DEVCOM Army Research Laboratory, Chia-Chin Chen at National Taiwan University, Zihua Zhu and Yingge Du at Pacific Northwest National Laboratory, and Ye Zhang at the University of Houston.</em> </p></div> </div> </div> </div> </div> <script> window.location.href = `/today/2024/09/12/discovery-could-lead-longer-lasting-ev-batteries-hasten-energy-transition`; </script> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Thu, 19 Sep 2024 20:56:11 +0000 Anonymous 1068 at /mse Research breakthrough could boost clean energy production /mse/2024/09/16/research-breakthrough-could-boost-clean-energy-production <span> Research breakthrough could boost clean energy production </span> <span><span>Anonymous (not verified)</span></span> <span><time datetime="2024-09-16T09:07:55-06:00" title="Monday, September 16, 2024 - 09:07">Mon, 09/16/2024 - 09:07</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/mse/sites/default/files/styles/focal_image_wide/public/article-thumbnail/image_png.jpg?h=fa8c64ea&amp;itok=pnVkp7DM" width="1200" height="600" alt="Nature Catalysis cover"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/mse/taxonomy/term/213"> Research </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/mse/taxonomy/term/408" hreflang="en">Hendrik Heinz</a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-content-media ucb-article-content-media-above"> <div> <div class="paragraph paragraph--type--media paragraph--view-mode--default"> </div> </div> </div> <div class="ucb-article-text d-flex align-items-center" itemprop="articleBody"> <div><p dir="ltr"><span>Professor&nbsp;</span><a href="/chbe/hendrik-heinz" rel="nofollow"><span>Hendrik Heinz</span></a><span> and his CU Boulder team, along with collaborators from University of California, Los Angeles, achieved a breakthrough that could boost clean energy production. The&nbsp;</span><a href="https://www.nature.com/articles/s41929-024-01175-8" rel="nofollow"><span>research</span></a><span> was featured on the cover of the journal “Nature Catalysis” in July.</span></p> <p dir="ltr"><span>In the study, researchers pinpointed the active sites of tiny platinum-alloy catalysts, which are crucial for making fuel cells more efficient at converting water into energy.</span></p> <p dir="ltr"><span>Fuel cells generate electricity through a chemical reaction, typically combining hydrogen with oxygen. Unlike traditional combustion engines, they produce energy without burning fuel, making fuel cells a clean, efficient technology, ideal for powering electric vehicles.</span></p> <p dir="ltr"><span>The catalysts accelerate the reactions that convert hydrogen and oxygen into electricity, making the process more efficient and enhancing the overall performance of the fuel cell. Using advanced 3D atomic imaging and machine learning, the study revealed how these catalysts work at an atomic level, providing insights that could help design better catalysts to address global energy challenges.</span></p> <p dir="ltr"><span>Cheng Zhu, a postdoctoral associate in the Heinz Group, made significant contributions to the study and recently joined the faculty at Guangdong Technion - Israel Institute of Technology (GTIIT) in China.</span></p> <p dir="ltr"><span>This research was supported by the National Science Foundation's Materials Genome Initiative, (</span><a href="https://nam10.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdmref.org%2F&amp;data=05%7C02%7CSusan.Glairon%40Colorado.EDU%7C556d8ec8292547b8b64d08dcb8b57193%7C3ded8b1b070d462982e4c0b019f46057%7C1%7C0%7C638588336973145723%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&amp;sdata=KyVe8CfNtO9NiLLtDgXPSn5UfFw%2Fh5Lar%2FMPQSgVUvY%3D&amp;reserved=0" rel="nofollow"><span>DMREF</span></a><span>), including the first Special Creativity Award in the DMREF program. Heinz led the CU Boulder-UCLA team, which has resulted in more than 60 publications, including more than 10 papers in top journals like “Science” and “Nature” and high-level “Nature” journals such as “Nature Catalysis.” The UCLA team included the senior investigators Phillipe Sautet, Yu Huang and Jianwei (John) Miao.&nbsp;</span></p></div> </div> </div> </div> </div> <script> window.location.href = `/chbe/2024/09/16/research-breakthrough-could-boost-clean-energy-production`; </script> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Mon, 16 Sep 2024 15:07:55 +0000 Anonymous 1067 at /mse A Band-Aid for the heart? New 3D printing method makes this, and much more, possible /mse/2024/08/06/band-aid-heart-new-3d-printing-method-makes-and-much-more-possible <span>A Band-Aid for the heart? New 3D printing method makes this, and much more, possible</span> <span><span>Anonymous (not verified)</span></span> <span><time datetime="2024-08-06T10:50:03-06:00" title="Tuesday, August 6, 2024 - 10:50">Tue, 08/06/2024 - 10:50</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/mse/sites/default/files/styles/focal_image_wide/public/article-thumbnail/biotech_3d.printer.cc64.jpg?h=1dcd1023&amp;itok=pZfVHup1" width="1200" height="600" alt="Matt Davidson, a research associate in the Burdick Lab, shows off a 3D-printed material that could be used for a variety of medical applications."> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/mse/taxonomy/term/213"> Research </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/mse/taxonomy/term/421" hreflang="en">Jason Burdick News</a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-content-media ucb-article-content-media-above"> <div> <div class="paragraph paragraph--type--media paragraph--view-mode--default"> </div> </div> </div> <div class="ucb-article-text d-flex align-items-center" itemprop="articleBody"> <div><p>In the quest to develop life-like materials to replace and repair human body parts, scientists face a formidable challenge: Real tissues are often both strong and stretchable and vary in shape and size.</p> <p>A CU Boulder-led team, in collaboration with researchers at the University of Pennsylvania, has taken a critical step toward cracking that code. They’ve developed a new way to 3D print material that is at once elastic enough to withstand a heart’s persistent beating, tough enough to endure the crushing load placed on joints, and easily shapable to fit a patient’s unique defects.</p> <p>Better yet, it sticks easily to wet tissue.</p> <p>Their breakthrough, described in the Aug. 2 edition <a href="https://www.science.org/doi/10.1126/science.adn6925" rel="nofollow">of the journal Science</a>,&nbsp;helps pave the way toward a new generation of biomaterials, from internal bandages that deliver drugs directly to the heart to cartilage patches and needle-free sutures.</p> <p>“Cardiac and cartilage tissues are similar in that they have very limited capacity to repair themselves. When they’re damaged, there is no turning back,” said senior author Jason Burdick, a professor of chemical and biological engineering at CU Boulder’s BioFrontiers Institute. “By developing new, more resilient materials to enhance that repair process, we can have a big impact on patients.”</p> <h2>Worm ‘blobs’&nbsp;as inspiration</h2> <p>Historically, biomedical devices have been created via molding or casting, techniques which work well for mass production of identical implants but aren’t practical when it comes to personalizing those implants for specific patients. In recent years, 3D printing has opened a world of new possibilities for medical applications by allowing researchers to make materials in many shapes and structures.</p> <p>Unlike typical printers, which simply place ink on paper, 3D printers deposit layer after layer of plastics, metals or even living cells to create multidimensional objects.</p> <p>One specific material, known as a hydrogel (the stuff that contact lenses are made of), has been a favorite prospect for fabricating artificial tissues, organs and implants.</p> <p>&nbsp;</p> <div class="feature-layout-callout feature-layout-callout-large feature-layout-callout-float-right clearfix"> <div class="feature-layout-callout-inner element-max-width-padding"> <p>&nbsp;</p> <div class="image-caption image-caption-none"> <p> </p><p>Jason Burdick in his lab at the BioFrontiers Institute&nbsp;with the 3D Printer.&nbsp;</p> <p>&nbsp;</p> </div> <p>&nbsp;</p> <div class="image-caption image-caption-none"> <p> </p><p>This 3D printed material is at once strong, expandable, moldable and sticky.</p> <p>&nbsp;</p> </div> <p>&nbsp;</p> <div class="image-caption image-caption-none"> <p> </p><p>Laboratory tests show this 3D printed material molds and sticks to organs. Pictured is a porcine heart.</p> <p>&nbsp;</p> </div> <p>&nbsp;</p> </div> </div> <p>But getting these from the lab to the clinic has been tough because traditional 3D-printed hydrogels tend to either break when stretched, crack under pressure or are too stiff to mold around tissues.</p> <p>“Imagine if you had a rigid plastic adhered to your heart. It wouldn’t deform as your heart beats,” said Burdick. “It would just fracture.”</p> <p>To achieve both strength and elasticity within 3D printed hydrogels, Burdick and his colleagues took a cue from worms, which repeatedly tangle and untangle themselves around one another in three-dimensional “worm blobs” that have both solid and liquid-like properties. Previous research has shown that incorporating similarly intertwined chains of molecules, known as “entanglements,” can make them tougher.</p> <p>Their new printing method, known as CLEAR (for Continuous-curing after Light Exposure Aided by Redox initiation), follows a series of steps to entangle long molecules inside 3D-printed materials much like those intertwined worms.</p> <p>When the team stretched and weight-loaded those materials in the lab (one researcher even ran over a sample with her bike) they found them to be exponentially tougher than materials printed with a standard method of 3D printing known as Digital Light Processing (DLP). Better yet: They also conformed and stuck to animal tissues and organs.</p> <p>“We can now 3D print adhesive materials that are strong enough to mechanically support tissue,” said co-first author Matt Davidson, a research associate in the Burdick Lab. “We have never been able to do that before.”</p> <h2>Revolutionizing care</h2> <p>Burdick imagines a day when such 3D-printed materials could be used to repair defects in hearts, deliver tissue-regenerating drugs directly to organs or cartilage, restrain bulging discs or even stitch people up in the operating room without inflicting tissue damage like a needle and suture can.</p> <p>His lab has filed for a provisional patent and plans to launch more studies soon to better understand how tissues react to the presence of such materials.</p> <p>But the team stresses that their new method could have impacts far beyond medicine—in research and manufacturing too. For instance, their method eliminates the need for additional energy to cure, or harden, parts, making the 3D printing process more environmentally friendly.</p> <p>“This is a simple 3D processing method that people could ultimately use in their own academic labs as well as in industry to improve the mechanical properties of materials for a wide variety of applications,” said first author Abhishek Dhand, a researcher in the <a href="/lab/burdick/" rel="nofollow">Burdick Lab</a> and doctoral candidate in the Department of Bioengineering at the University of Pennsylvania. “It solves a big problem for 3D printing.”</p> <p><em>Other co-authors on the paper include Hannah Zlotnick, a postdoctoral researcher in the Burdick Lab, and National Institute of Standards and Technology (NIST) scientists Thomas Kolibaba and Jason Killgore.</em> </p></div> </div> </div> </div> </div> <script> window.location.href = `/today/2024/08/01/band-aid-heart-new-3d-printing-method-makes-and-much-more-possible`; </script> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Tue, 06 Aug 2024 16:50:03 +0000 Anonymous 1066 at /mse Building Blocks /mse/2024/07/31/building-blocks <span>Building Blocks</span> <span><span>Anonymous (not verified)</span></span> <span><time datetime="2024-07-31T13:30:55-06:00" title="Wednesday, July 31, 2024 - 13:30">Wed, 07/31/2024 - 13:30</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/mse/sites/default/files/styles/focal_image_wide/public/article-thumbnail/mija_hubler_prometheus_20240312_jmp_175_jpg.jpg?h=7ac7a9e2&amp;itok=krrKMUC_" width="1200" height="600" alt="Mija Hubler in lab"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/mse/taxonomy/term/213"> Research </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/mse/taxonomy/term/411" hreflang="en">Mija Hubler News</a> <a href="/mse/taxonomy/term/404" hreflang="en">Wil Srubar News</a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-content-media ucb-article-content-media-above"> <div> <div class="paragraph paragraph--type--media paragraph--view-mode--default"> </div> </div> </div> <div class="ucb-article-text d-flex align-items-center" itemprop="articleBody"> <div><h2>Prometheus Materials eyes expansion through increased production&nbsp;</h2> <p>Traditional cement production is responsible for about 7 percent of global greenhouse gas emissions, making it a significant contributor to climate change.&nbsp;</p> <p>So faculty at CU Boulder started developing a greener alternative. A Department of Defense-funded project launched in 2016 led to the creation of an eco-friendly cement with a minimal carbon footprint, emitting little to no carbon dioxide and recycling 95 percent of the water used in production.&nbsp;</p> <p>In 2021, they made the move to commercialize the technology as Prometheus Materials. Founded by Associate Professors Sherri Cook, Mija Hubler and Wil Srubar of civil, environmental and architectural engineering, along with Jeff Cameron of biochemistry and CEO Loren Burnett, the Colorado-based company produces bio-concrete from the biomineralization of blue-green algae in a natural process similar to that which creates sea shells and coral reefs.&nbsp;</p> <p>While initially focused on research and development, the company has since entered a commercialization phase, exploring the establishment of new facilities to transition from a single production line to multiple lines and to increase production, Hubler said.</p> <p>“We’re in flux,” she said. “We’re dreaming bigger.”</p> <h2><strong>Product development</strong></h2> <p>Hubler said the “most exciting part” is that Prometheus Materials has successfully scaled production and launched a commercial product for the construction industry.&nbsp;</p> <p>Initially, the team focused on assessing structural performance, particularly compressive strength. That led to the development of their inaugural product — the ProZero Bio-Block Masonry unit.</p> <p>After constructing a pilot wall, the researchers put their ears to it and were met with a remarkable silence. Further tests confirmed the product’s efficacy in preventing sound from bouncing off or attenuating through walls. This discovery paved the way for another product, ProZero Sound Attenuation units. Potential uses include sound panels in large conference rooms and classrooms.&nbsp;</p> <p>The researchers also evaluated the product’s suitability for pedestrian and parking surfaces, analyzing its response to environmental moisture. The outcomes were positive, prompting the development of a third product.</p> <h2><strong>Proof points</strong></h2> <p>&nbsp;</p> <div class="feature-layout-callout feature-layout-callout-x-large feature-layout-callout-float-right clearfix"> <div class="feature-layout-callout-inner element-max-width-padding"> <p><a href="/engineering/sites/default/files/article-image/mija_hubler_prometheus_20240312_jmp_175.jpg" rel="nofollow"></a>Mija Hubler with the Prometheus algae-growing system. </p></div> </div> <p>But consumers can’t yet walk into a hardware store and buy a ProZero product off the shelf.</p> <p>While Prometheus Materials has performed some pilot studies with large companies like Microsoft and has discussed potential applications for its products in Microsoft’s offices and warehouses, it will take years before the products will be available in places like Home Depot.</p> <p>Hubler emphasized that the construction industry prefers “tried and true” materials and is cautious to adopt new ones. Larger construction firms play a crucial role in pioneering and embracing innovative products, serving as trailblazers to introduce these newer products into the market.&nbsp;</p> <p>But there are multiple reasons why it’s the right time for the company to expand operations.&nbsp;</p> <p>“The construction industry, building owners and developers are paying a lot more attention to carbon emissions, and our materials have reduced emissions,” Srubar said. “[Another] driver is the trend toward nature-based materials that don’t contain any ‘red list’ chemicals in them.”</p> <p>Cook added that many companies have ambitious corporate sustainability goals but lack practical means to achieve them. Prometheus Materials provides a tangible avenue for these companies to start realizing their sustainability objectives.</p> <p>Srubar echoed the strategic importance of working with these firms, whose teams of architects and engineers collaborate in designing and engineering structures using innovative materials.</p></div> </div> </div> </div> </div> <script> window.location.href = `/engineering/2024/06/18/building-blocks`; </script> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Wed, 31 Jul 2024 19:30:55 +0000 Anonymous 1065 at /mse CU Boulder receives $1M grant to advance biofabrication training for PhD students /mse/2024/07/15/cu-boulder-receives-1m-grant-advance-biofabrication-training-phd-students <span>CU Boulder receives $1M grant to advance biofabrication training for PhD students</span> <span><span>Anonymous (not verified)</span></span> <span><time datetime="2024-07-15T15:51:49-06:00" title="Monday, July 15, 2024 - 15:51">Mon, 07/15/2024 - 15:51</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/mse/sites/default/files/styles/focal_image_wide/public/article-thumbnail/biofabrication1_jpg.jpg?h=26e6566c&amp;itok=JnUl9XWp" width="1200" height="600" alt="Morgan Riffe (left), a PhD candidate in Materials Science &amp; Engineering, looks on while Meg Cooke, PhD, research associate in the BioFrontiers Institute, points to 3D printing biomaterial scaffolds that use an extrusion printer. "> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/mse/taxonomy/term/213"> Research </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/mse/taxonomy/term/421" hreflang="en">Jason Burdick News</a> <a href="/mse/taxonomy/term/409" hreflang="en">Stephanie Bryant News</a> </div> <span>Susan Glairon</span> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-content-media ucb-article-content-media-above"> <div> <div class="paragraph paragraph--type--media paragraph--view-mode--default"> </div> </div> </div> <div class="ucb-article-text d-flex align-items-center" itemprop="articleBody"> <div><div class="feature-layout-callout feature-layout-callout-xlarge"><div class="ucb-callout-content"> <div class="imageMediaStyle large_image_style"> <img loading="lazy" src="/mse/sites/default/files/styles/large_image_style/public/article-thumbnail/stephanie_bryant.png?itok=uRZpOUQy" width="1500" height="1500" alt="Stephanie Bryant in the lab"> </div> <p>Professor&nbsp;Stephanie Bryant&nbsp;</p></div></div><div class="feature-layout-callout feature-layout-callout-xlarge"><div class="ucb-callout-content"> <div class="imageMediaStyle large_image_style"> <img loading="lazy" src="/mse/sites/default/files/styles/large_image_style/public/callout/jason_burdick.cc14.jpg?itok=71b16AxP" width="1500" height="2251" alt> </div> <p>Professor&nbsp;Jason Burdick&nbsp;</p></div></div><p>Photo caption:&nbsp;Morgan Riffe (left), a PhD candidate in Materials Science &amp; Engineering, looks on while Meg Cooke, PhD, research associate in the BioFrontiers Institute, explains the&nbsp;3D printing process to fabricate biomaterial scaffolds.&nbsp;</p><p>The <a href="/mse/" rel="nofollow">Materials Science and Engineering Program</a> at the received a $1M grant to fund interdisciplinary doctoral research training in biofabrication.</p><p>The National Institutes of Health T32 award will support this rapidly developing field, which enables precise and effective ways to study and treat various medical conditions, such as growing new organs for transplants or repairing damaged tissues.</p><p>The grant, along with support from CU Boulder’s College of Engineering and Applied Science, Research &amp; Innovation Office (RIO), the Graduate School and various departments and programs, will support five new trainees each year for a period of two years each, over the next five years. Professors <a href="/chbe/jason-burdick" rel="nofollow">Jason Burdick</a> and <a href="/chbe/stephanie-j-bryant" rel="nofollow">Stephanie Bryant</a> with the <a href="/mse/" rel="nofollow">Materials Science and Engineering Program</a>, <a href="/chbe/" rel="nofollow">Department of Chemical and Biological Engineering</a> and the <a href="/biofrontiers/" rel="nofollow">BioFrontiers Institute</a> are the principal investigators.</p><p>“Biofabrication is an emerging field with growing advances each year,” Burdick said. “It’s important to train students in this field to not only advance their own dissertation research, but also to train a future workforce that will help turn biofabrication methods into new products and clinical therapies.”</p><p>Biofabrication uses advanced 3D processing techniques, allowing engineers to design and build materials that serve as tools in medical research and treatments. Examples of these materials include: scaffolds that support the growth and development of new tissues, microparticles used for targeted drug delivery, and microfluidic platforms, which are small-scale devices that manipulate tiny amounts of fluids for research and diagnostic purposes.</p><p>Representative biofabrication technologies include 3D printing, the use of electrospinning to create fine fibers similar to natural tissues and photopatterning to develop detailed and complex designs.</p><p>The ability to shape material structures at such a detailed level can be used to grow new tissues for transplants or repair damaged organs, develop materials that can help the body heal itself by promoting the growth of healthy cells, design microparticles that can deliver medication directly to targeted areas in the body, provide more accurate environments for growing cells in the lab, and create more realistic models of human tissues for research and testing to reduce the need for animal models.</p><p>At CU Boulder, students applying to the program will be starting their second year of PhD training in one of the following five engineering disciplines—biological engineering, biomedical engineering, chemical engineering, materials science and engineering, and mechanical engineering. Those accepted to the training program will be supervised and mentored by the T32 preceptors based in these engineering departments and programs and co-mentored by clinical collaborators to provide a biomedical and clinical focus to the work.</p><p>“This training program builds upon the excellence in biofabrication that we have in engineering at CU Boulder,” Bryant said. “It offers an exciting new opportunity for our graduate students to gain a deeper understanding of biofabrication, complementing the core knowledge they are developing in their PhD program.”</p><p>As part of the training program, a monthly seminar series will be developed for students and postdocs across biofabrication groups to share their work within the community. Students will also receive a certificate in biofabrication. The group will create a website for the training program and include biofabrication resources to the broader community.&nbsp;</p><p>&nbsp;</p></div> </div> </div> </div> </div> <div>CU Boulder's Materials Science and Engineering Program received a $1M grant to fund doctoral research training in biofabrication, a field that enables precise and effective ways to study and treat medical conditions, such as growing new organs or repairing damaged tissues.<br> <br> <br> <br> </div> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Mon, 15 Jul 2024 21:51:49 +0000 Anonymous 1061 at /mse Wyatt Shields selected as Camille Dreyfus Teacher-Scholar /mse/2024/05/20/wyatt-shields-selected-camille-dreyfus-teacher-scholar <span>Wyatt Shields selected as Camille Dreyfus Teacher-Scholar</span> <span><span>Anonymous (not verified)</span></span> <span><time datetime="2024-05-20T09:27:38-06:00" title="Monday, May 20, 2024 - 09:27">Mon, 05/20/2024 - 09:27</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/mse/sites/default/files/styles/focal_image_wide/public/article-thumbnail/9-7-packard-meeting-127112_jpg.jpg?h=074dbd44&amp;itok=OrdkR6t2" width="1200" height="600" alt=" Assistant Professor Wyatt Shields presents at the 2023 Packard Fellows retreat."> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/mse/taxonomy/term/213"> Research </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/mse/taxonomy/term/398" hreflang="en">Wyatt Shields</a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-content-media ucb-article-content-media-above"> <div> <div class="paragraph paragraph--type--media paragraph--view-mode--default"> </div> </div> </div> <div class="ucb-article-text d-flex align-items-center" itemprop="articleBody"> <div><p><a href="/chbe/c-wyatt-shields-iv" rel="nofollow">Wyatt Shields</a> has been honored with a 2024 Camille Dreyfus Teacher-Scholar award for his contributions to teaching and research on <a href="/today/2023/05/24/these-tiny-medical-robots-could-one-day-travel-through-your-body" rel="nofollow">medical microrobots</a>, self-propelled miniature robots that one day might deliver prescription drugs to hard-to-reach places inside the human body.</p> <div class="feature-layout-callout feature-layout-callout-xlarge feature-layout-callout-float-right clearfix"> <div class="feature-layout-callout-inner element-max-width-padding"> <p><br> PhD Student Nicole Day presents her research to Northglenn High School Students&nbsp;at the "Reverse Science Fair," held on Nov. 27, 2023.&nbsp;Credit: Byron Reed, 9News.</p> </div> </div> <p>&nbsp;</p> <div class="feature-layout-callout feature-layout-callout-xlarge feature-layout-callout-float-right clearfix"> <div class="feature-layout-callout-inner element-max-width-padding"><br> <br> Microrobot seen under a scanning electron microscope.<br> (Credit: Shields Lab)</div> </div> <p>Eighteen Camille Dreyfus Teacher-Scholars were selected for 2024, and each awardee will receive an unrestricted grant of $100,000.</p> <p>"I am honored to&nbsp;join an impressive community of scholars who are committed to research excellence and teaching at the highest levels, reflecting&nbsp;the core values we share at CU Boulder,”&nbsp;said Shields, an assistant professor in the <a href="/chbe/" rel="nofollow">Department of Chemical and Biological Engineering</a> at the .</p> <p>According to the foundation, award recipients “are within the first five years of their academic careers, have each created an outstanding independent body of scholarship and are deeply committed to education.”</p> <p>Funds from this award will support new trainees in the <a href="/faculty/shields/" rel="nofollow">Shields Lab</a> to advance work on synthetic and living microrobots that are capable of performing next-generation medical tasks. Synthetic microrobots are manufactured from biocompatible materials to move or change shape in response to stimulation from ultrasound or magnetic fields. In contrast, living microrobots comprise nanoparticles that attach to—and co-opt—immune cells for enhanced delivery to diseased tissues for medical treatments.</p> <p>The microrobots may one day enhance the delivery of drugs to diseased tissues within the body or inform treatment decisions; instead of cutting into the patient, the robots could enter the body through a pill or an injection and undergo remote stimulation.</p> <p>Shields added that teaching takes many forms, including classroom pedagogy, mentoring undergraduate students, graduate students and postdoctoral researchers in the lab&nbsp;and engaging in community outreach.</p> <p>“The Camille and Henry Dreyfus Foundation value all of these dimensions of teaching,” he said.</p> <p>Shields plans to use this award to connect academic research to classroom teaching and to engage the broader public. To this end, Shields and Alex Rose from CU Science Discovery created the first annual "<a href="https://www.9news.com/article/news/local/next/next-with-kyle-clark/reverse-science-fair-northglenn-high-school-cu-grad-students/73-61da1e84-c76f-4479-859a-ea4e8a48a455" rel="nofollow">Reverse Science Fair</a>"&nbsp;last year. This event&nbsp;challenges graduate students to effectively communicate their research to local high school students in an engaging and understandable manner.</p> <p>“The earlier we offer these opportunities for high school students to discover the diversity of scientific fields and careers out there, the better,” Rose said.</p> <p><em>Shields has won numerous awards, including a </em><a href="/chbe/2022/10/19/cu-boulders-wyatt-shields-wins-2022-packard-fellowship-microscale-robotics" rel="nofollow"><em>Packard </em></a><a href="/chbe/2022/10/19/cu-boulders-wyatt-shields-wins-2022-packard-fellowship-microscale-robotics" rel="nofollow"><em>Foundation Fellowship in Science and Engineering</em></a>,&nbsp;<em>a <a href="/engineering/2022/06/13/wyatt-shields-named-pew-scholar-biomedical-sciences" rel="nofollow">Pew&nbsp;Biomedical Scholar award,</a> an <a href="/chbe/2022/03/01/shields-earns-nsf-career-award-biomarkers-research-tied-high-school-outreach" rel="nofollow">NSF CAREER award</a>, an&nbsp;<a href="/chbe/2022/03/07/fighting-bends-shields-receives-office-naval-research-young-investigator-program-award" rel="nofollow">Office of Naval Research Young Investigator Program award​</a>&nbsp;and a <a href="/chbe/2022/12/19/wyatt-shields-receive-17-million-award-national-institute-general-medical-sciences" rel="nofollow">National Institute of Health&nbsp;Maximizing Investigators' Research award</a>.</em> </p></div> </div> </div> </div> </div> <script> window.location.href = `/chbe/2024/05/10/wyatt-shields-selected-camille-dreyfus-teacher-scholar`; </script> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Mon, 20 May 2024 15:27:38 +0000 Anonymous 1058 at /mse Joints that could heal themselves? Researchers could get there in 5 years /mse/2024/03/26/joints-could-heal-themselves-researchers-could-get-there-5-years <span>Joints that could heal themselves? Researchers could get there in 5 years</span> <span><span>Anonymous (not verified)</span></span> <span><time datetime="2024-03-26T09:52:50-06:00" title="Tuesday, March 26, 2024 - 09:52">Tue, 03/26/2024 - 09:52</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/mse/sites/default/files/styles/focal_image_wide/public/article-thumbnail/osteoarthritis_grant.cc_.098_copy_jpg.jpg?h=4f230fae&amp;itok=tYP8-idK" width="1200" height="600" alt="Stephanie Bryant, a materials scientist in the BioFrontiers Institute at CU Boulder, works in her lab. Bryant is leading a Colorado team seeking to end osteoarthritis."> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/mse/taxonomy/term/213"> Research </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/mse/taxonomy/term/409" hreflang="en">Stephanie Bryant News</a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-content-media ucb-article-content-media-above"> <div> <div class="paragraph paragraph--type--media paragraph--view-mode--default"> </div> </div> </div> <div class="ucb-article-text d-flex align-items-center" itemprop="articleBody"> <div><div class="field field-name-body field-type-text-with-summary field-label-hidden"> <div class="field-items"> <div class="field-item even"> <p>Imagine a day when joints could heal themselves.</p> <p>At the first inkling of a creaky knee, patients could get a single shot in the joint that would not only stop their cartilage and bone from eroding, but kick start its regrowth. In more advanced cases, that shot might also deliver a biomaterial repair kit to patch holes in tissue. If multiple joints ached, an annual IV infusion could ferry regenerating therapies to all of them at once.</p> <p>&nbsp;</p> <div class="feature-layout-callout feature-layout-callout-xlarge feature-layout-callout-float-right clearfix"> <div class="feature-layout-callout-inner element-max-width-padding"> <p>&nbsp;</p> <div class="video-filter"> <div class="fluid-width-video-wrapper"></div> </div> <p>&nbsp;</p> </div> </div> <p>This may seem like a dream to the 32.5 million people who suffer from osteoarthritis. This week, the Advanced Research Projects Agency for Health (ARPA-H) awarded up to $39 million to a -led team of scientists to work toward making it a reality.&nbsp;</p> <p>The <a href="https://arpa-h.gov/news-and-events/arpa-hs-nitro-selects-teams-lead-breakthroughs-reversing-oa" rel="nofollow">Novel Innovations for Tissue Regeneration in Osteoarthritis (NITRO)</a> program was the first created under ARPA-H, a new federal agency to support “high-impact solutions to society's most challenging health problems.”&nbsp;</p> <p>With the cash infusion, a dream team of engineers, medical scientists and veterinarians from CU Boulder, the CU Anschutz Medical Campus and Colorado State University can make an aggressive final push toward a goal many have spent their entire careers pursuing.&nbsp;</p> <p>“Within five years, our goal is to develop a suite of non-invasive therapies that can end osteoarthritis,” said project leader and Principal Investigator Stephanie Bryant, PhD, professor in the Department of Chemical and Biological Engineering, Materials Science and Engineering, and the BioFrontiers Institute at CU Boulder. “It could be an absolute game-changer for patients.”</p> <h2>An epidemic without a cure</h2> <p>Osteoarthritis is the third most common disease in the U.S. and affects roughly one in six people over age 30 worldwide.</p> <p>The disease causes cartilage—the buffering tissue that keeps bones from grinding together—to decay. Over time, bone is damaged too, which reshapes the joint and results in movement becoming painful.&nbsp;</p> <p>Age and obesity increase risk, and rates are on the rise as the U.S. population ages and grows more sedentary. At present, patients are generally limited to two options: Treat the pain and, when that is no longer adequate, surgically replace the joint. There is no cure.</p> <p>&nbsp;</p> <div class="feature-layout-callout feature-layout-callout-large feature-layout-callout-float-right clearfix"> <div class="feature-layout-callout-inner element-max-width-padding"> <p>&nbsp;</p> <div class="image-caption image-caption-none"> <p> </p><p>Co-Principal Investigators Michael Zuscik, PhD, professor and research vice chair in the Department of Orthopedics and Karin Payne, PhD, associate professor of orthopedics at CU Anschutz (Photo by&nbsp;Ryan Wuller/CU Anschutz)</p> <p>&nbsp;</p> </div> <p>&nbsp;</p> <div class="image-caption image-caption-none"> <p> </p><p>Co-Principal Investigator Laurie Goodrich, DVM PhD, a veterinary clinician scientist and director of the Orthopaedic Research Center at Colorado State University’s Translational Medicine Institute (Photo courtesy of Goodrich)</p> <p>&nbsp;</p> </div> <p>&nbsp;</p> </div> </div> <p>“To truly address osteoarthritis, you have to get at both the biology and the structural problem,” said co-Principal Investigator Michael Zuscik, PhD, professor and research vice chair in the Department of Orthopedics at the Anschutz Medical Campus. “This unique Colorado dream team we have put together has the multidisciplinary expertise, and now the resources, to tackle both at once. We can approach curing the disease like never before.”</p> <p>Zuscik spent 15 years developing and testing a drug that addresses the biology, nudging both cartilage and bone cells to produce proteins needed to rebuild. While promising, it must be injected every day.</p> <p>Meantime, Bryant, a materials scientist, has worked for 26 years to develop three-dimensional gel-like biomaterials that can slip into the cracks of torn cartilage or worn bone, providing supportive scaffolding—like the joists of a new building—for the body’s own cells to migrate to.</p> <p>And scientists at CSU have been working for years to perfect gene therapy techniques aimed at controlling inflammation and hastening cartilage healing.</p> <p>The team now faces an engineering challenge—to devise methods to deliver these technologies to the body together, in a way that provides lasting benefit and treats multiple joints at once if needed.</p> <h2>A one-shot medical breakthrough</h2> <p>To that end, the team is developing nanoparticles that could be administered intravenously, serving as Trojan horses that migrate to inflamed sites and deliver a regenerative medicine cocktail that enables joints to heal.</p> <p>The team hopes to ultimately commercialize three innovations: a healing shot,&nbsp;an injury-patching hydrogel,&nbsp;and an annual infusion for systemically treating osteoarthritis.&nbsp;</p> <p>When it’s time for trials, co-Principal Investigator Laurie Goodrich, DVM PhD, a veterinary clinician scientist and director of the Orthopaedic Research Center at CSU’s Translational Medicine Institute, will lead the charge in animals.&nbsp;</p> <p>“CSU’s expertise in veterinary medicine will play a crucial role in helping to move this science to the next step,” said Goodrich. “It’s humbling to be a part of it.”</p> <p>However, it’s not enough to simply develop such treatments, said Co-Principal Investigator Karin Payne, PhD, associate professor of orthopedics at CU Anschutz.</p> <p>“At the core of this, the goal is to develop a therapy that’s going to be available to all Americans, not just a privileged few,” Payne said, noting that researchers will include a demographically diverse group of study participants and minimize cost to make the treatments as affordable as possible.</p> <p>&nbsp;</p> <div class="feature-layout-callout feature-layout-callout-small feature-layout-callout-float-right clearfix"> <div class="feature-layout-callout-inner element-max-width-padding"> <p class="hero"><a href="/research/abnexus/" rel="nofollow"><strong>Learn more about AB Nexus</strong></a> </p><p>&nbsp;</p> </div> </div> <p>Early collaborations between team members were catalyzed by <a href="/research/abnexus/" rel="nofollow">AB Nexus</a>, which provides internal funding and resources to support partnerships between CU Boulder and CU Anschutz.</p> <p>The Colorado team is one of five performer teams to receive an award in the NITRO program.</p> <p>“This is one of the most debilitating diseases there is and leads to people not being able to work or do the things they love,” Bryant said. “The resulting lack of exercise increases the risk of other problems like heart disease. For us to have a chance to improve people’s lives—it’s the opportunity of a lifetime.”</p> </div> </div> </div></div> </div> </div> </div> </div> <script> window.location.href = `/today/2024/03/26/joints-could-heal-themselves-researchers-could-get-there-5-years`; </script> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Tue, 26 Mar 2024 15:52:50 +0000 Anonymous 1051 at /mse Researchers take major step toward developing next-generation solar cells /mse/2024/03/22/researchers-take-major-step-toward-developing-next-generation-solar-cells <span>Researchers take major step toward developing next-generation solar cells</span> <span><span>Anonymous (not verified)</span></span> <span><time datetime="2024-03-22T15:15:05-06:00" title="Friday, March 22, 2024 - 15:15">Fri, 03/22/2024 - 15:15</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/mse/sites/default/files/styles/focal_image_wide/public/article-thumbnail/engineering_lab_portrait_shoots_0596.jpg?h=679d5512&amp;itok=9DYH2wLB" width="1200" height="600" alt="Mike McGehee"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/mse/taxonomy/term/213"> Research </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/mse/taxonomy/term/418" hreflang="en">Michael McGehee News</a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-content-media ucb-article-content-media-above"> <div> <div class="paragraph paragraph--type--media paragraph--view-mode--default"> </div> </div> </div> <div class="ucb-article-text d-flex align-items-center" itemprop="articleBody"> <div><div> <div> <div> <p>The solar energy world is ready for a revolution. Scientists are racing to develop a new type of solar cell using materials that can convert electricity more efficiently than today’s panels.&nbsp;</p> <p>In a <a href="https://www.nature.com/articles/s41560-024-01471-4" rel="nofollow">new paper</a> published February 26 in the journal Nature Energy, a CU Boulder researcher and his international collaborators unveiled an innovative method to manufacture the new solar cells, known as perovskite cells, an achievement critical for the commercialization of what many consider the next generation of solar technology.</p> <p>Today, nearly all solar panels are made from silicon, which boast an efficiency of 22%. This means silicon panels can only convert about one-fifth of the sun’s energy into electricity, because the material absorbs only a limited proportion of sunlight’s wavelengths. Producing silicon is also expensive and energy intensive.</p> <p>Enter perovskite. The synthetic semiconducting material has the potential to convert substantially more solar power than silicon at a lower production cost.</p> <p>&nbsp;</p> <div> <div> <p>&nbsp;</p> <div class="image-caption image-caption-none"> <p> </p><p>Michael McGehee</p> <p>&nbsp;</p> </div> <p>&nbsp;</p> </div> </div> <p>“Perovskites might be a game changer,” said <a href="/chbe/michael-d-mcgehee" rel="nofollow">Michael McGehee</a>, a professor in the Department of Chemical and Biological Engineering and fellow with CU Boulder’s Renewable &amp; Sustainable Energy Institute.&nbsp;</p> <p>Scientists have been testing perovskite solar cells by stacking them on top of traditional silicon cells to make tandem cells. Layering the two materials, each absorbing a different part of the sun’s spectrum, can potentially increase the panels’ efficiency by over 50%.</p> <p>“We're still seeing rapid electrification, with more cars running off electricity. We’re hoping to retire more coal plants and eventually get rid of natural gas plants,” said McGehee. &nbsp;“If you believe that we're going to have a fully renewable future, then you're planning for the wind and solar markets to expand by at least five to ten- fold from where it is today.”&nbsp;</p> <p>To get there, he said, the industry must improve the efficiency of solar cells.</p> <p>But a major challenge in making them from perovskite at a commercial scale is the process of coating the semiconductor onto the glass plates which are the building blocks of panels. Currently, the coating process has to take place in a small box filled with non-reactive gas, such as nitrogen, to prevent the perovskites from reacting with oxygen, which decreases their performance. &nbsp;</p> <p>“This is fine at the research stage. But when you start coating large pieces of glass, it gets harder and harder to do this in a nitrogen filled box,” McGehee said.&nbsp;</p> <p>McGehee and his collaborators set off to find a way to prevent that damaging reaction with the air. They found that adding dimethylammonium formate, or DMAFo, to the perovskite solution before coating could prevent the materials from oxidizing. This discovery enables coating to take place outside the small box, in ambient air. Experiments showed that perovskite cells made with the DMAFo additive can achieve an efficiency of nearly 25% on their own, comparable to the current efficiency record for perovskite cells of 26%.&nbsp;</p> <p>The additive also improved the cells’ stability.&nbsp;</p> <p>Commercial silicon panels can typically maintain at least 80% of their performance after 25 years, losing about 1% of efficiency per year. Perovskite cells, however, are more reactive and degrade faster in the air. The new study showed that the perovskite cell made with DMAFo retained 90% of its efficiency after the researchers exposed them to LED light that mimicked sunlight for 700 hours. In contrast, cells made in the air without DMAFo degraded quickly after only 300 hours.&nbsp;</p> <p>While this is a very encouraging result, there are 8,000 hours in one year, he noted. So longer tests are needed to determine how these cells hold up overtime.&nbsp;</p> <p>“It’s too early to say that they are as stable as silicon panels, but we're on a good trajectory toward that,” McGehee said.&nbsp;</p> <p>The study brings perovskite solar cells one step closer to commercialization. At the same time, McGehee’s team is actively developing tandem cells with a real-world efficiency of over 30% that have the same operational lifetime as silicon panels.&nbsp;</p> <p>McGehee leads a U.S. academic–industry partnership called <a href="/rasei/2023_TEAMUP" rel="nofollow">Tandems for Efficient and Advanced Modules using Ultrastable Perovskites </a>(TEAMUP). Together with researchers from three other universities, two companies and a national laboratory, the consortium received $9 million funding from the U.S. Department of Energy last year to develop stable tandem perovskites that can feasibly be used in the real world and are commercially viable. The goal is to create tandem more efficient than conventional silicon panels and equally stable over a 25-year period.&nbsp;</p> <p>With higher efficiency and potentially lower price tags, these tandem cells could have broader applications than existing silicon panels, including potential installation on the roofs of electric vehicles. They could add 15 to 25 miles of range per day to a car left out in the sun, enough to cover many people’s daily commutes. Drones and sailboats could also be powered by such panels. &nbsp;</p> <p>After a decade of research in perovskites, engineers have built perovskite cells that are as efficient as silicon cells, which were invented 70 years ago, McGehee said. “We are taking perovskites to the finish line. &nbsp;If tandems work out well, they certainly have the potential to dominate the market and become the next generation of solar cells,” he said.&nbsp;</p> </div> </div> </div></div> </div> </div> </div> </div> <script> window.location.href = `/today/2024/03/20/researchers-take-major-step-toward-developing-next-generation-solar-cells?utm_source=newsletter&amp;utm_medium=email&amp;utm_campaign=24.0322%20FS%20CUBT&amp;utm_id=790043`; </script> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Fri, 22 Mar 2024 21:15:05 +0000 Anonymous 1050 at /mse Advancing next-gen solar technology /mse/2023/12/13/advancing-next-gen-solar-technology <span>Advancing next-gen solar technology</span> <span><span>Anonymous (not verified)</span></span> <span><time datetime="2023-12-13T13:24:47-07:00" title="Wednesday, December 13, 2023 - 13:24">Wed, 12/13/2023 - 13:24</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/mse/sites/default/files/styles/focal_image_wide/public/article-thumbnail/ck_perovskite_8663-webcrop_0_jpg.jpg?h=d22ce010&amp;itok=9mkW6sjs" width="1200" height="600" alt="Images: Mike McGehee and Tomas Leitjens working on solar cells; a stacked illustration of how the perovskite layer (purple layer) will be laid on top of the existing silicon technology (grey-scaled layer), representing both the monolithic and mechanically stacked configurations."> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/mse/taxonomy/term/213"> Research </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/mse/taxonomy/term/418" hreflang="en">Michael McGehee News</a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-content-media ucb-article-content-media-above"> <div> <div class="paragraph paragraph--type--media paragraph--view-mode--default"> </div> </div> </div> <div class="ucb-article-text d-flex align-items-center" itemprop="articleBody"> <div><p class="lead">National CU Boulder-led consortium aims to enable the commercialization of perovskite-silicon tandem solar cells</p> <p>The U.S. Department of Energy Solar Energy Technologies Office (SETO) has funded a major new research consortium at the <a href="/rasei/" rel="nofollow">Renewable and Sustainable Energy Institute (RASEI)</a> at CU Boulder. Tandems for Efficient and Advanced Modules using Ultrastable Perovskites, or TEAMUP, is poised to enhance the resilience of tandem perovskite-silicon solar modules, enabling scaling and manufacturing, and ultimately ushering in the next generation of more affordable and efficient solar energy.&nbsp;</p> <p>Nine million dollars in funding over three years will support collaborative research across four academic institutions (Arizona State University, CU Boulder, Northwestern University and University of California Merced), three industrial companies (Beyond Silicon, Swift Solar and Tandem PV) and one national laboratory (National Renewable Energy Laboratory, or NREL). The consortium will bring together expertise in: manufacturing perovskites, a cutting-edge material for harvesting solar energy; placing perovskite materials into electronic devices to harvest the electricity generated; and layering the new technology into existing silicon-based solar panels to rapidly integrate perovskite technology into current solar infrastructure.&nbsp;</p> <p>Solar panels must perform in unforgiving environments, including a wide range of temperatures and weather conditions. TEAMUP, led by chemical and biological engineering Professor Mike McGehee, will focus on improving the durability of these materials to increase the stability and efficiency of the solar cells, ultimately helping drive down costs.&nbsp;</p> <blockquote> <p>“People choose the option that saves them money, so by making solar cells less expensive, it’s really going to help the environment,” said McGehee.&nbsp;</p> </blockquote> <p>First introduced in the 1950s, modern solar panels use silicon as the semiconductor. However, manufacturing silicon is expensive and energy intensive, which has driven many researchers to focus on replacing silicon with solar panels made completely from perovskite materials. Unfortunately, these next-generation panels are many years away. Tandem perovskite-silicon solar cells, which use a layer of perovskite placed on top of existing silicon-based technology, are more efficient and could enable panels to produce 50% more power. The opportunity to integrate perovskite with today’s silicon cells and modules, and the potential to reach gigawatt production milestones on a timescale attractive to investors and manufacturers for commercialization and deployment, is driving interest in this area.&nbsp;</p> <p>Two approaches have emerged for combining the perovskite and silicon technologies. The ‘monolithic’ approach directly combines the perovskite and silicon together into a single-piece solar module. In the alternative ‘mechanically stacked’ approach, separate pieces of perovskite and silicon materials are stacked, with the perovskite layer on top.</p> <p>Which approach to pursue? Instead of focusing exclusively on a single approach, TEAMUP has brought together experts in both approaches to work together and learn from each other. Creating a research ecosystem that fosters creative collaboration above competition is central to this consortium.&nbsp;</p> <p>“We have an extraordinary team who bring many different types of expertise and I look forward to seeing what we can accomplish,” said McGehee.&nbsp;</p> <p>“Tandem PV and Swift Solar have long sought to work directly together and with the broader U.S. research community on common research topics that can be solved more quickly as a group. We are excited by the opportunity to work on the same team and not as competitors,” said Colin Bailie, founder and CEO of Tandem PV.&nbsp;</p> <p>Solving these stability issues and making this new technology durable enough to stand up to the rigors of life in the sun could have a significant impact on the broader economy.&nbsp;</p> <p>“Perovskite-silicon tandems represent not only the opportunity to make solar more affordable for more communities in the U.S., but also a unique opportunity to return the U.S. to a position of leadership in solar manufacturing and develop a domestic manufacturing base around this new technology,” said Bailie.&nbsp;</p> <p>Tomas Leijtens, cofounder and chief technology officer for Swift Solar, agreed. “We’re excited to work with this diverse team to tackle the most pressing stability and performance challenges as we scale up perovskite solar technology. This consortium should help accelerate perovskite tandem commercialization in the U.S.”</p> <hr> <p><em>Images: Mike McGehee and Tomas Leitjens working on solar cells; a stacked illustration of how the perovskite layer (purple layer) will be laid on top of the existing silicon technology (grey-scaled layer), representing both the monolithic and mechanically stacked configurations. Images by: Daniel Morton.&nbsp;</em></p></div> </div> </div> </div> </div> <script> window.location.href = `/research/report/2022-23/advancing-next-gen-solar-technology`; </script> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Wed, 13 Dec 2023 20:24:47 +0000 Anonymous 1045 at /mse